THE M6 MACRO PROCESSOR
by
Andrew D. Hall

Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

ABSTRACT

M6 is a general purpose macro processor which processes a
continuous stream of input text by copying it character-by-
character to an output text unchanged except for selected

portions known as macro calls.

The processor is coded entirely in FORTRAN IV in a way that
is intended to be highly portable. Some details of the im-

plementation are also described.

THE M6 MACRC PROCESSOR
by

Andrew D. Hall, Jr.
Bell Telephone Laboratories, Incorporated
Murray Hill, New Jersey

1. Iptroduction

M6 is a macro processor designed by M. D. McIlroy and R.
Morris of Bell Telephone Laboratories and combines ideas
from many sources [1,2,3,4]. The version described here is
a translation of an earlier experimental version written in
MAD by R. Morris and has been written in FORTRAN IV in a way
that is intended to be highly portable.*

M6 receives a continuous stream of jinput text from an exter-
nal source and copies it character-by-character to an gutput
text unchanged except for selected portions known as macro
calls. If a macro call or a quoted string (6) never occurs
in the input text, the processor does nothing at all to the
text stream as it passes through.

The beginning and end of a macro call are signaled by
opening and closing warning characters. 1In this implementa-
tion, the character sharp (#) is used for an opening warning
character and either colon (:) or semicolon (;) may be used
for a closing warning character. The call itself consists
of a series of arguments separated by commas (,) as in

#ADD3,A,B,C:

Upon encountering a sharp in the input text, the processor
suspends transmission of characters to the output text and
instead begins collecting the arguments of the call. When
the closing colon or semicolon is found, the argument after
the initial sharp, or "argument 0", is taken to be the name
of the macro keing called and is looked up in a table of
macro definitions to find the replacement text. The entire
call, including warning characters, is deleted and the
replacement text substituted in its plave. The scan resumes
at the beginning or end of the substituted text depending on
which warning character terminated the call.

For instance, if the name PSYMBOL is in the table of macro
definitions with replacement text A6 then the appearance of

* M6 has been compiled and executed on the GE-635, IBM
360765, CDC 6600, Univac 1108, PDP-10 and SIGMA 7 without
any changes in the source code except for input-output unit
numkers.

June, 1971 1

$PSYMBOL: in the input stream would be replaced in its en-
tirety by A6. 3If the input text contained

FORMAT (8PSYMBOL:)
then the output text would receive

FORMAT (A6)
Occurrences of nested macro calls not enclosed in string
quotes (6) will be evaluated as they occur during argument
collection. For example, in

#ADD3, #PSYMBOL: ,B,C:

the call of PSYMBOL will be evaluated first so that the call
to ADD3 becomes

#ADD3,A6,B,C:

2. Maczo Definition

The macro processor has a number of built-ip macro defini-

tions (8), the most important of which is the macro, DEF,

for defining other macros. This macro is used in the form
#DEF,arg1,arg2:

where arg1-'is the name of a macro to be defined and arg2 is
the replacement text to be associated u&th the name.

Aside from making an entry in the table of macro defini-
tions, DEF has no effect, for its own replacement text is
the null string. We can now define the macro PSYMBOL by the
call

#DEF , PSYMBOL,A6:
If the input text is

¢DEF,PSYMBOL,A6 s FORMAT (#PSYMBOL:)
the output text is

FORMAT (AS6)
If a call of DEF redefines a macro, the new definition
supersedes the old. Also, if a macro has never been defined
and is called, then the macro whose name is the null string

is 1looked up and used. Initially this macro has null
replacement text but it can, of course, be redefined.

2 June, 1971

3. Evaluatjon

We speak of the macro processor as evaluating its input.
The way text is evaluated depends on whether it is part of a
call, part of replacement text, or part of a string quota-
tion. The following sections describe the process of
evaluation in considerable detail.

4. Argument Substitutjon

In the replacement text of a macro, a dollar sign ($) fol-
lowed immediately by a digit acts as a parameter. When a
macro has been called, all occurrences of $0, $1, ..., $9 in
the replacement text are each replaced by the corresponding
argument in the call. Parameters for which no argument has
been supplied are replaced by null strings. For example the
input text

#DEF,ADD3,$1 = $2 + $3:#ADD3,X,Y,2:
would yield
X=Y+ 2

Since only the first ten argumnets may be referenced by
parameters in replacement text, special conventions have
been established for the collection of argument 9 which make
it possible to write macros that have more than ten argu-
ments (7).

5. Recursive fvaluatiop

The process of evaluating a macro call can be thought of as
occurring in two steps:

First, the arguments of the call are substituted in the
replacement text for occurrences of $0,$1,...,$9, regardless
of any string quotes (6) which may be present in the
replacement text.

Next, the text resulting from this substitution replaces the
entire call, including the warning characters. If the
original call was terminated by a colon, then scanning of
the resulting input text resumes at the beginning of the
substituted replacement text. If the original call wvas ter-
minated by a semicolon then the scan resumes immediately,
after the substituted replacement text.

June, 1971 3

6. Stzing Quotation

To permit warning characters ¢to appear in text and be
treated as ordinary characters, the macro processor recog-
nizes a left-angle-bracket (<) and a right-angle-bracket (>)
as string quotes. In a string enclosed in quotes, the
characters sharp, comma, colon, semicolon are not recognized
as special characters. Nested occurrences of string quotes
must be balanced. When a quotation is evaluated the outer-
most pair is removed. .

For example, the input text
<#A:>

is not a macro call, because the surrounding gquotes exempt
#A: from special status. Consequently the text evaluates to

#A:

The macro, QSYMBOL, can be defined to have the replacement
text

‘Al4,A2
by the following definition
#DEF, QSYMBOL, <Al4 ,A2>:

7. 'Argqugent 9

Unlike arguments 0 through 8, argument 9 4is collected
without recognizing comma, sharp or string quotes as special
characters. Thus, all arguments occurring after the ninth
commag.a:e collected as one string which then becomes argu-
ment 9.

For example, the macro, CONCAT, which simply concatenates up
to 16 arguments, would be defined as follows:

$DEF,CONCAT, <$1$28354$536$73$88$CONCATITO16,893>2
#DEF, CONCATITO16,<$1$28384$58657$8>:

8. Bullt-ip Macro Definitiong

In order to facilitate the writing of new macro definitions,
a4 number of wuseful macros have been initially defined.
Where an argument is interpreted as an integer, its value is
found by taking the 1longest 4initial substring of digits .

June, 1971

(perhaps preceded by a sign) as a decimal number. If the
%nitial substring of digits is null, the value is taken as

The calls for the built-in macros are as follows:

#DEF,argl,arg2:

A macro named argl, with replacement text, arg2, is
defined. The replacement text of DEF is null.

#COPY,arg1,arg2:

A macro named arg2 is defined with replacement text
identical to that of the macro named argi. The
replacement text of COPY is null. For example

#COPY,ADD, +:

defines a macro +¢ which has the same replacement
text as ADD.

The macros DEF and COPY are used to define or rename
macros. They work for built-in macros as well as
macros previously defined by DEF and COPY.

#SEQ,arg1,arg2:
$SNE,argl,arg2:

The replacement text of SEQ is 1 if argl! is iden-
tical, character by character, to arg2. Otherwise
the replacement text is 0.

The replacement text of SNE is 1 if argi is pot
identical to arg2. Otherwise the replacement text
is 0.

For example,

#SEC,ABC, AB: 8SNE,ABC,AB:
#SNE, 1, #8EQ,1,1::

would be replaced by

01
0

June, 1971 5

#GT,argl,arg2:
#GE,arg1,arg2:
#LT,arg1,arg2:
#LE,arg1,arg2:
$EQ,arg1,arg2:
#NE,argi,arqg2:s

The replacement text of GT, GE, 1T, LE, EQ or NE is
1 i£ arg1 is respectively greater than, greater than
or gqual to, Jess than, less than or gqual to, gqual
to, or pot gqual to arg2. The arguments, argl! and
arg2, are interpreted as integers. For axample
¢EQ,0,0:
and
#EQ,0:

would both be replaced by 1.

¢IF,argl,arg2,...,argn:

The arguments argi,arg2,... are considered in pairs
from left to right. If the left argument of a pair
is the string 1, then the replacement text of IF
becomes the right argument in the pair. If none of
the left arquments in the pairs are 1, then the
replacement text of IF is null.

For example,

.IF. 0. arg2. 1,“9“3

will be repiaced by argi.

#GO,axrgi:
GO is a macro which allows conditional evaluation of
the replacement text of a macro. If GO is evaluated
as part of a replacement text and arg! is equal to
the string 1, the remainder of the replacement text
is ignored. Otherwise GO has no effect. In either
case, GO is replaced by the null string.
For example, if SPEECH is defined as follows:

#DEF,SPEECH,<NOW 1S THE HOUR #GO,$1:FOR...>:
then
#SPEECH, 1:

] June, 1971

is replaced Ly
NOW XS THE EOUR
and
¢SPEECH, 2:
is replaced Ly
NOW IS THE HOUR FOR...

#GOEK,arg1:

GOBK is similar to GO, except that evaluation of the -
replacement text is restarted from the initial
character. ’

#SIZ2E,arg1:

SIZE is replaced by the length of arg! . in
characters.

#SUBSTR,arg1,arg2,arg3:

'~ SUBSTR is normally replaced by the substring of argi
- beginning at character position arg2 and having
length arg3. A negative arg3 is taken to be 0, and
a null arg3 as arbitrarily large. In case of an im-
‘proper substring, whose ends lie outside arg1, only
its intersection with arg1 is taken. '

$ADD,arg1,arg2:
#8UB,arg1,arg2:
$MPY,arg1,arg2:
#DIV,argl1,arg2:

ADD, SUB, MPY and DIV are replaced by the sum, dif-
ference, product and integer gquotient of argl and
arg2, respectively. The arguments, argt! and arg2,
are interpreted as integers. overflow conditions
are not checked and if arg2 is 0 in DIV, the result
is the null string.

$EXP,argl,arg2:
If arg2 is negative, the result is the null string.
If arg2 is zero, the result is 1. Otherwise, the -
result is arg1 raised to the arg2-th power. Over-

June, 1971

flow conditions are not checked.

@#DNL:

DNL reads the source stream through the occurrence
of the next new-line character (10.2) and throws it
awvay. DNL has null replacement text. DNL is used
to delete unwanted new-lines from the source text.

For example

$DEF, PSYMBOL,A6:
and

:2§F.PS!MBOL.ODNL:

are equivalent. If the #DNL: were not included in
the latter call of DEF, then a new-line character
would be included in the replacement text of PSYMBOL
immediately preceding A6,

#8OURCE,axrg1,arg2:

After the next new-line character is processed, the
current input unit number will be *"pushed down® and
the input unit set to argli. 1If axg2 is not null,
the new unit will be rewound before use. The occur-
rence of an END macro will "pop" the the input unit
to its previous value.

$END:

After the next new-line character is processed, the

unit number will be “popped* to the value most re-

cently saved by a SOURCE macro call. If the stack

;: empty when END is called, processing will be ter-
nated.

$TRACE,arg1:

If arg! is 1, trace mode is set on, otherwise off.
when in trace mode, the level of each macro call and
the €f£irst ten characters of each argument will be
printed (10.1) as the macro calls are encountered
during processing. The new-line character is
printed as a blank.)

8 - : June, 1971

9. Examples

The following examples illustrate some useful and in-
teresting techniques.

Conditional replacement - IF

Suppase MIN is a macro to be called with two argqu-
ments both of which are integers and is to be
replaced by the smaller of the two arguments. One
way to write MIN is:

¢DEF,MIN, <#IF, #LT,$1,82:,<$15,1,<82>:>:

Redefinition

Quite often it is necessary to have a method for
generating “created symbols" when using macros. For
instance, when using macros to generate FORTRAN DO
loops it is necessary to have a unique 1label every
time a loop is generated. This can be accomplished
as follows:

$DEF, CRSN,0:
$DEF ,CRS,<#DEF,CRSN, #ADD, #CRSN:, 1: : #CRSN: >

The initial value of CRSN is defined to be 0. Each
time CRS is called, the definition of CRSN is in-
cremented by 1 and the call of CRS replaced by the
new value. At any time, the last symbol created can
be obtained by calling CRSN.

GO

Suppose it is desired to write a macro, STARS, which
has one integer argqument. The call

#STARS,n:

is to be replaced by n asterisks (n 2 0). STARS can
be defined as follows:

$DEF, STARS ,<#GO, #EQ, $1,0: : *#STARS,#SUB, $1, 1::>:
The use of GO in the replacement text of STARS will
cause the replacement text which follows to be ig-
nored when STARS is called with 0 as an argument.
Thus the call

#STARS, 2:

June, 1971 9

is evaluated in three steps, as follows:

*§STARS, 1:
**$STARS,0:

%
- String Quotes
:?geCSE1ggwgzgin;wgu°:::?ples illustrate some of the
(a) #DEF,X,$1: #X,Y:
and
8DEF,X,<$> 1: #X, ¥:
are both replaced by
4
while
#DEF,X,<<$>1>: #X,Y:
is replaced by
$1

(b) #DEF,A, $DEF,B,$1::~$A,GOSH: ~#B,GEE:
is replaced by

-=GEE
while

#DEF,A,<#DEF,B,$1:>:~-#A,GOSH: -#B,GEE:
is replaced Ly

~-=GOSH
but

#DEF,A ,<{<#DEF,B,$1:>>:~#A,GOSH: -#B,GEE:
is replaced Ly

-3DEF,B,GOSH:~

10 June, 1971

10. Implementatjon Notes
10.1. Input-output Upit Asgignments

The current implementation reads input text from logical
unit 5 and writes output text on logical unit 43. Diag-
nostics, trace output and run statistics are written on
logical unit 6.

If necessary, these unit assignments can be changed by
modifying the appropriate DATA statements in the BLOCK DATA
subprogram.

10.2. Treatment of Input Text

All reading of input text is handled by the logical func-
tion RDCHAR which reads records (card images) under an 80A1
format. Only the first 72 characters of an input record are
considered significant so that the last 8 characters may
contain sequence information. Trailing blanks are deleted
and replaced by a “new-line" character.

10.3. Treatment of Cutput Text

M6 collects output characters until a new-line character oc-
curs or a line exceeds 72 characters, at which time the line
is padded with blanks to 72 characters and the sequence
field of the 1last input line appended. The line is then
written on the output file.

10.4. Implementation Parameters

The program contains 25 subroutines, totaling about 600 ex-
ecutable statements.

In the present implementation there is room for 250 distinct
macro definitions of which 25 are already used for built-in
definitions. Table entries of macros that have been
redefined will be reused. The number of definitions per-
mitted can be changed by adjusting the length of the COMMON
regions named MLISTN, MLISTD, MLISTT, MLISTU and MLISTL and
by adjusting the value of MFREE which is initialized in the
BELOCK DATA subprogram.

About 12000 characters of string storage are available for
macro names and cortesponding replacement texts. Each

June, 1971 1

character is stored as a FORTRAN INTEGER variable. This
storage is also used for the temporary storage of argument
strings during macro evaluation so that storage can be ex-
hausted even though no new definitions are made. The amount
of string storage available can be changed by adjusting the
length of blank COMMON and by adjusting the value of LENGTH
which is initialized in the BLOCK DATA subprogram.

The maximum recursive depth for macro calls is around 60 and
depends on the number of arguments appearing in calls at
each level. This maximum depth can be changéd by adjusting
the length of the COMMON region named PDLS and the value of
the variable OPTR which is initialized in the BLOCK DATA
subprogram.

The maximum depth of the stack of input units is 10 (see
SOURCE and END iq 8).

10.5. Diagnostic Messages

M6 can give diagnostic messages. Four of the diagnostics
pertain to table limitations and are as follows:

STORAGE EXHAUSTED

PUSH DOWN LIST OVERFLOW

TOO MANY DEFINITIONS

INPUT STREAMS NESTED TOO DEEPLY

There are two diagnostics indicating an internal Mé error,
as follows:

INCORRECT CALL TO LOG2

PROCESSCR ERROR

10.6. Improving Performance.

Measurement has shown that the major overhead in M6 is in-
curred in the execution of the subprograms STREQ, RDCHAR,
WRCHAR and WRBUFF. The execution speed of M6 is approx-
imately doubled by rewriting these routines in assembly
language. :

12 June, 1971

1.

2.

3.

References

C. Strachey, A General Purpose Macrogenerator, Comput.
J. 8, 3 (Oct. 1965) pp. 225-241.

C. N. Mooers and L. P. Deutsch, TRAC, A Text Handling
Language, Proc. ACM 20th Nat. Conf. (1965), pp. 229-246.

IBM 70950/7094 IBSYS Operating System: Version 13, Macro
Assembly Program (MAP) Language, Form C28-6392-3.

M. D. McIlroy, Macro Imstruction Extensions of Compiler
Languages, CACM 3 (1960) pp. 560-571.

June, 1971 13

