UNIX For Beginners

Brian W. Kernighan

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

This paper is meant to help new users get started on UNIX. It covers:

o basics needed for day-to-day use of the system — typing commands, correct-
ing typing mistakes, logging in and out, mail, inter-console communication, the
file system, printing files, redirecting 1/0, pipes, and the shell.

@ document preparation — a brief tutorial on the ROFF formatter for beginners,
hints on preparing documents, and capsule descriptions of some supporting
software.

® UNIX programming — using the editor, programming the shell, programming
in C, other languages.

There is also an annotated UNIX bibliography.

UNIX for Beginners

Brian W. Kernighan
Bell Laboratories, Murray Hill, N. J.

In many ways, UNIX is the state of the art
in computer operating sysiems. From the
user’s point of view, it is easy to learn and use,
and presents few of the usual impediments (o
getting the job done.

It is hard, however, for the beginner to
know where 10 start, and how to make the best
use of the facilities available. The purpose of
this introduction is to point out high spots for
new users, so they can get used to the main
ideas of UNIX and start making good use of it
quickly.

This paper is not an attempt to re-write
the UNIx Programmer’s Manual; often the discus-
sion of something is simply “read section x in
the manual.” (This implies that you will need a
copy- of the UNIX Programmer’s Manual.) Rather
it suggests in what order to read the manual,
and it collects together things that are stated
only indirectly in the manual.

There are five sections:

1. Getting Started: How to log in to a UNIX, -

how to type, what to do about mistakes in
typing, how to log out. Some of this is
dependent on which UNIX you log into
(phone numbers, for example) and what
terminal you use, so this section must
necessarily be supplemented by local in-
formation.

2. Day-to-day Use: Things you need every
day to use UNIX effectively: generally use-
ful commands; the file system.

3. Document Preparation: Preparing
manuscripts is one of the most common
uses for UNIX. This section contains ad-
vice, but not extensive instructions on
any of the formatting programs.

4. Writing Programs: UNIX is an excellent
vehicle for developing programs. This
section talks about some of the tools, but
again is not a tutorial in any of the pro-
gramming languages that UNIX provides.

5. A UNIX Reading List. An annotated bi-

bliography of documents worth reading by
new users.

1. GETTING STARTED

Logging In

Most of the details about logging in are in
the manual section called “How 1o Get Started™
(pages iv-vin the 5th Edition). Here are a cou-
ple of extra warnings.

You must have a UNIX login name, which
you can get from whoever administers your
system. You also need to know the phone
number. UNIX is capable of dealing with a
variety of terminals: Terminet 300’s; Execu-
port, TI and similar portables; video terminals;
GSI’s; and even the venerable Teletype in its
yarious forms. But note: UNIX will not handle
IBM 2741 terminals and their derivatives (e.g.,
some Anderson-Jacobsons, Novar). Further-
more, UNIX is strongly oriented towards devices
with Jower case. If your terminal produces only
upper case (e.g., model 33 Teletype), life will be
so difficult that you should look for another ter-
minal.

Be sure to set the switches appropriately
on your device: speed (if it’s variable) to 30
characters per second, lower case, full duplex,
even parity, and any others that local wisdom
advises. Establish a connection using whatever
magic is needed for your terminal. UNIX should
type “login:” at you. If it types garbage, you
may be at the wrong speed; push the ‘break’ or
‘interrupt’ key once. If that fails to produce a
login message, consult a guru.

)

When you get a “login:” message, type
your login name in lower case. Follow it by a
RETURN if the terminal has one. If a password
is required, y.u will be asked for it, and (if pos-
sible) printing will be turned off while you type
it, again followed by a RETURN. (On M37 Tele-
types always use NEWLINE or LINEFEED in place
of RETURN).

The culmination of your login efforts is a
percent sign “%. The percent sign means that
UNIX is ready to accept commands from the
terminal. (You may also get a message of the
day just before the percent sign or a
notification that you have mail.)

Typing Commands

Once you've seen the percent sign, you
can type commands, which are requests that
UNIX do something. Try typing

date
followed by RETURN. You should get back some-
thing like

Sun Sep 22 10:52:29 EDT 1974
Don't forget the RETURN after the command, or
nothing will happen. If you think you're being
ignored, type a RETURN; something should hap-

pen. We won't show the carriage returns, but
they have to be there.

Another command you might try is who,
which tells you everyone who is currently logged
in:

who

gives something like

pip tyf Sep 22 09:40
bwk ityg Sep 22 09:48
mel ttyh Sep 22 09:58

The time is when the user logged in.

If you make a mistake typing the command
name, UNIX will tell you. For example, if you
type

whom
you will be told

whom: not found

Strange Terminal Behavior

Sometimes you can get into a state where
your terminal acts strangely. For example, each
letter may be typed twice, or the RETURN may
not cause a line feed. You can often fix this by
logging out and logging back in. Or you can read
the description of the command stty in section |
of the manual. This will also tell you how to get
intelligent treatment of tab characters (which are
much used in UNIX) if your terminal doesn’t
have tabs. If it does have computer-settable
tabs, the command tabs will set the stops
correctly for you.

Mistakes in Typing

If you make a typing mistake, and see it
before the carriage return has been typed, there
are two ways to recover. The sharp-character
“#" erases the last character typed; in fact suc-
cessive uses of “#" erase characters back to the
beginning of the line (but not beyond). So if

you 1ype badly, you can correct as you go:
dd#atle##e

is the same as *‘date™.

The at-sign ‘@™ erases all of the charac-
ters typed so far on the current input line, so if
the line is irretrievably fouled up, type an “@™
and start over (on the same line!).

What if you must enter a sharp or al-sign
as part of the text? If you precede either “#" or
“@ "™ by a backslash “'\", it loses its erase mean-
ing. This implies that to erase a backslash, you
have 1o type two sharps or two at-signs. The
backslash is used extensively in UNIX to indicate
that the following character is in some way spe-
cial.

Readahead

UNIx has full readahead, which means that
you can type as fast as you want, whenever you
wani, even when some command is typing at
you. If you type during output, your input char-
acters will appear intermixed with the output
characters, but they will be stored away by UNIX
and interpreted in the correct order. So you can
type two commands one after another without
waiting for the first to finish or even begin.

Stopping a Program

You can stop most programs by typing the
character “DEL" (perhaps called “delete” or
“rubout” on your terminal). There are excep-
tions, like the text editor, where DEL stops what-
ever the program is doing but leaves you in that
program. You can also just hang up the phone.
The “interrupt™ or “break™ key found on most
terminals has no effect.

Logging Out
The easiest way to log out is to hang up the
phone. You can also type

login name-of-new=-user

and let someone else use the terminal you were
on. [t is not sufficient just to turn off the termi-
nal. UNIX has no time-out mechanism, so you'll
be there forever unless you hang up.

Mail
When you log in, you may sometimes get
the message
You have mail.

UNIX provides a postal system so you can send
and receive letters from other users of the sys-
tem. To read your mail, issue the command

mail

Your mail will be printed, and then you will be
asked

Save?

If you do want to save the mail, type y, for
“yes™; any other response means *‘no".

How do you send mail 10 someone else?
Suppose it is to go 10 “joe” (assuming “joe™ is
someone’s login name). The easiest way is this:

mail joe

now type in the text of the letter

on as many lines as you like ...

after the last line of the letter

type the character “control-d",

that is, hold down “‘control” and itype
a letrer “d".

And that’s it. The “control-d” sequence, usually
called “EOT™, is used throughout UNIX to mark
the end of input from a terminal, so you might
as well get used toit.

There are other ways to send mail — you
can send a previously prepared letter, and you
can mail to a number of people all at once. For
more details see mail (I).

The notation mail (I) means the command
mail in section (I) of the unix Programmer’s
Manual.

Writing to other users

At some point in your UNIX career, out of
the blue will come a message like

Message from joe...

accompanied by a startling beep. It means that
Joe wants 10 talk to you, but unless you take ex-
plicit action you won't be able to talk back. To
respond, type the command

write joe

This establishes a two-way communication path.
Now whatever Joe types on his terminal will ap-
pear on yours and vice versa. The path is slow,
rather like talking to the moon. (If you are in
the middie of something, you have to get to a
state where you can type a command. Normally,
whatever program you are running has to ter-
minate or be terminated. If you're editing, you
can escape temporarily from the editor — read
the manual.)

A protocol is needed to keep what you type
from getting garbled up with what Joe types.
Typically it’s like this:

Joe types “write smith” and waits.

Smith types “write joe™ and wails.

Joe now types his message (as many lines
as he likes). When he’s ready for a reply,
he signals it by typing (o), which stands
for “over™.

Now Smith types a reply, also terminated
by (o).

This cycle repeats unlil someone gets
tired; he then signals his intent 0 quit
with (o+0), for “over and out™.

To terminate Lhe conversation, each side
must type a “control-d” character alone
on a line. (*Delete” also works.) When
the other person types his ‘“‘control-d™,
you will get the message “EOT" on your
terminal.

If you write 10 someone who isn’t logged
in, or who doesn’t want 1o be disturbed, you’'ll
be told. If the target is logged in but doesn’t
answer after a decent interval, simply type
“control-d™.

On-line Manual

The UNIX Programmer’s Manual is typically
kept on-line. If you get stuck on something, and
can't find an expert to assist you, you can print
on your terminal some manual section that
might help. It’s also useful for getting the most
up-to-date information on a command. To print
a manual section, type ‘“man section-name”.
Thus to read up on the who command, type

man who

If the section in question isn’t in part 1 of the
manual, you have 10 give the section number as
well, as in

man 6 chess

Of course you're out of luck if you can’t
remember the section name.

1I. DAY-TO-DAY USE

Creating F.ies — The Editor

If we have to type a paper or a letier or a
program, how do we get the information stored
in the machine? Most of these tasks are done
with the UNIX “tlext editor” ed. Since ed is
thoroughly documented in ed (1) and explained
in A Tutorial Introduction 1o the UNIX Text Editor,
we won't spend any time here describing how to
use it. All we want it for right now is to make
some files. (A file is just a collection of informa-
tion stored in the machine, a simplistic but ade-
quate definition.)

To create a file with some text in it, do the
following:

ed {invokes the text editor)
a (command to *‘ed™, to add text)
now rype in
whatever text you wan ...
(signals the end of adding text)

At this point we could do various editing opera-
tions on the text we typed in, such as correcting
spelling mistakes, rearranging paragraphs and the
like. Finally, we write the information we have
typed into a file with the editor command “w":

w junk .
ed will respond with the number of characters it
wrote into the file called “junk™.

Suppose we now add a few more lines with
“a”, terminate them with *.", and write the
whole thing out as “temp”, using

w temp

We should now have two files, a smaller one
called “junk™ and a bigger one (bigger by the
extra lines) called “temp™. Type a “q” to quit
the editor.

What files are out there?

The Is (for “list”) command lists the
names (not contents) of any of the files that
UNIX knows about. If we type

‘s
the response will be
junk
temp

which are indeed our two files. They are sorted
into alphabetical order automatically, but other

variations are possible. For example, if we add

the optional argument “-t”,
Is -t
lists them in the order in which they were fast
changed, most recent first. The “-1” option gives
a “long” listing:
Is =l
will produce something like
~rw-tw-rw- | bwk 41 Sep 22 12:56 junk
-rw-rw=-rw=- | bwk 78 Sep 22 12:57 temp

The date and time are of the last change to the
file. The 4] and 78 are the number of characters
(you got the same thing from ed). *“bwk” is the
owner of the file — the person who created it.

*»

The *‘-rw-rw-rw-" tells who has permission to
read and write the file, in this case everyone.

Options can be combined: *“Is -It" would
give the same thing, but sorted into time order.
You can also name the files you're interested in,
and 1s will list the information about them only.
More details can be found in s ().

It is generally true of UNIX programs that
“flag” arguments like *-t" precede filename ar-
guments.

Printing Files

Now that you've got a file of text, how do
you print it so people can look at it? There are a
host of programs that do that, probably more
than are needed.

One simple thing is to use the editor, since
printing is often done just before making-
changes anyway. You can say

ed junk
1.3p

ed will reply with the count of the characters in
“junk™ and then print all the lines in the file.
After you learn how to use the editor, you can
be selective about the parts you print.

- There are times when it's not feasible to
use the editor for printing. For example, there is
a limit on how big a file ed can handie (about
65,000 characters or 4000 lines). Secondly, it
will only print one file at a time, and sometimes
you want to print several, one after another. So
here are a couple of alternatives.

First is cat, the simplest of all the printing
programs. cat simply copies all the files in a list
onto the terminal. So you can say

cat junk
or, to print two files,
cat junk temp
The two files are simply concatenated (hence the

name *cat’’) onto the terminal.

pr produces formatted printouts of files.
As with cat, pr prints all the files in a list. The
difference is that it produces headings with date,
time, page number and file name at the top of
each page, and extra lines to skip over the fold
in the paper. Thus,

pr junk temp

will list “junk™ neatly, then skip to the top of a
new page and list “temp” neatly.

pr will also produce multi-column output:
pr -3 junk

prints *junk™ in 3-column format. You can use
any reasonable number in place of *“3" and pr
will do its best.

It should be noted that pr is nor a format-
ting program in the sense of shuffling lines
around and justifying margins. The true for-
matters are roff, nroff, and troff, which we will
get to in the section on document preparation.

There are also programs that print files on
a high-speed printer. Look in your manual
under opr and lpr. Which to use depends on the
hardware configuration of your machine.

Shuffling Files About

Now that you have some files in the file
system and some experience in printing them,
you can try bigger things. For example, you can
move a file from one place 1o another (which
amounts 1o giving a file a new name), like this:

mv junk precious

This means that what used to be “junk™ is now
“precious”. If you do an Is command now, you
will get

precious
_temp

Beware that' if you move a file to another one
that.already exists, the already existing contents
are lost forever.

If you want to make a copy of a file (that is,
1o have two versions of something), you can use
the cp command:

¢p precious templ

makes a duplicate copy of ‘precious” in
“templ™.

Finally, when you get tired of creating and
moving files, there is a command to remove files

from the file system, called rm.
rm temp templ

will remove all of the files named. You will get a
warning message if one of the named files wasn’t
there.

Filename, What's in a

So far we have used filenames without ever
saying what’s a legal name, so it’s time for a cou-
ple of rules. First, filenames are limited to 14
characters, which is enough to be descriptive.
Second, although you can use almost any charac-

ter in a filename, common sense says you should
stick to ones that are visible, and that you should
probably avoid characiers that might be used
with other meanings. We already saw, for exam-
ple, that in the Is command, *'Is -t meant 1o list
in time order. So if you had a file whose name
was “-1", you would have a tough time listing it
by name. There are a number of other charac-
ters which have special meaning either to UNIX
as a whole or 10 numerous commands. To avoid
pitfalls, you would probably do well 1o use only
letiers, numbers and the period. (Don't use the
period as the first characier of a filename, for
reasons oo complicated to go into.)

On to some more posilive suggestions.
Suppose you're lyping a large document like a
book. Logically this divides into many small
pieces, like chapters and perhaps sections. Phy-
sically it must be divided too, for ed will not
handle big files. Thus you should type the docu-
ment as a number of files. You might have a
separate file for each chapter, called

chapl
chap2
elc...

Or, if each chapter were broken into several files,
you might have

chapl.l
chapl.2
chapl.l

c.i;apz.l
chap2.2

You can now tell at a glance where a particular
file fits into the whole.

There are advantages to a systematic nam-
ing convention which are not obvious to the no-
vice UNIX user. What if you wanted to print the
whole book? You could say

pr chapl.l chapl.2 chapl.3

but you would get tired pretty fast, and would
probably even make mistakes. Fortunately,
there is a shortcut. You can say

pr chap*

The *“*” means *“anything at ali”, so this
translates into *‘print all files whose names begin
with ‘chap’ ", listed in alphabetical order. This
shorthand notation is not a property of the pr
command, by the way. It is system-wide, a ser-
vice of the program that interprets commands
(the “shell” sh(1)). Using that fact, you can see

how to list the files of the book:
is chap®
produces

chapl.l
chapl.2
chapl.l

The “*" is not limited to the last position in a
filename — it can be anywhere. Thus

rm *junk®

removes all files that contain *junk™ as any part
of their name. As a special case, **" by itself
matches every filename, so

pr*
prints all the files (alphabetical order), and
rm*
removes a/l files. (You had better be sure that's

what you wanted to say!)

The “*" is not the only pattern-matching
feature available. Suppose you want 10 print
only chapters 1 through 4 and 9 of the book.
Then you can say

pr chapl12349]°

The “[..]” means to match any of the characters
inside the brackets. You can also do this with

pr chap(1-49])*

“[a-2]" matches any character in the range a
through z. There is also a 7" character, which
matches any single character, s0o

pr?

will print all files which have single-character
names. :

Of these niceties, **” is probably the mos{
useful, and you should get used to it. The others
are frills, but worth knowing.

If you should ever have to turn off the spe-
cial meaning of “*”, 7", etc., enclose the entire
argument in quotes (single or double), as in

Is "?"

What's in a Filename, Continued

When you first made that file called
“junk™, how did UNIX know that there wasn't
another “junk” somewhere else, especially since
the person in the next office is also reading this
tutorial? The reason is that generally each user
of UNIX has his own “directory”, which contains

only the files that belong 10 him. When you
create a new file, unless you take special action,
the new file is made in your own directory, and
is unrelated 10 any other file of the same name
that might exist in someone else's directory.

The set of all files that UNIX knows about
are organized into a (usually big) tree, with your °
files located several branches up into the tree. It
is possible for you 1o “walk™ around this tree,
and to find any file in the system, by starting at
the root of the tree and walking along the right
set of branches.

To begin, type
Is/

“/" is the name of the root of the tree (a con-
vention used by UNIX). You will get a response
something like this:

bin

dev

etc

lib

tmp

usr

This is a collection of the basic directories of
files that UNIX knows about. On most systems,
“usr” is a directory that contains all the normal
users of the system, like you. Now try

Is /usr

This should list a long series of names, among
which is your own login name. Finally, try

Is /usr/your-name

You should get what you get from a plain
Is

Now try
cat /usr/your-name/junk

(if “junk” is still around). The name
/usr/your-name/junk

is called the “pathname” of the file that you nor-
mally think of as “junk”. *“Pathname" has an
obvious meaning: it represents the full name of
the path you have to follow through the tree of
directories to get to a particular file. It is a
universal rule in UNIX that anywhere you can
use an ordinary filename, you can use a path-
name.

Here is a picture which may make this
clearer:

(root)

bin etc /usr dev tmp
/1IN 71\ AN

adam eve mar<
/ /

/ junk
junk temp

Notice that Mary’s “junk” is unrelaled to
Eve’'s.

This isn’t too exciting if all the files of in-
terest are in your own directory, but if you work
with someone else or on several projects con-
currently, it becomes handy indeed. For exam-
ple, your friends can print your book by saying

pr /usr/your-name/chap*

Similarly, you can find out what files your neigh-
bor has by saying

Is /usr/neighbor-name
or make your own copy of one of his files by

cp /usr/your-neighbor/his-file yourfile

(If your neighbor doesn’t want you poking
around in his files, or vice versa, privacy can be
arranged. Each file and directory can have
read-write-execute permissions for the owner, a
group, and everyone else, to control access. See
Is(I) and chmod (1) for details. As a matter of
observed fact, most users most of the time find
openness of more benefit than privacy.)

As a final experiment with pathnames, try
Is /bin /usr/bin

Do some of the names look familiar? When you
run a program, by typing its name after a “%”,
the system simply looks for a file of that name.
It looks first in your directory (where it typically
doesn’t find it), then in “/bin™ and finally in
“fusr/bin”. There is nothing magic about com-
mands like cat or Is, except that they have been
collected into two places to be easy to find and
administer.

What if you work regularly with someone
else on common information in his directory?
You could just log in as your friend each time
you want to, but you can also say “I want to
work on his files instead of my own”. This is
done by changing the directory that you are
currently in:

chdir /usr/your-friend

Now when you use a filename in something like
cat or pr, it refers to the file in “your-friend's"
directory. Changing directories doesn’t affect
any permissions associated with a file — if you
couldn’t access a file from your own directory,
changing to another directory won't alter that
fact.

If you forget what directory you're in, type
pwd

(**print working directory™) 10 find out.

It is often convenient to arrange one’s files
so that all the files related to one thing are in a
directory separate from other projects. For ex-
ample, when you write your book, you might
want 1o keep ali the text in a directory called
book. So make one with

mkdir book
then go 1o it with
chdir book

then start typing chapters. The book is now
found in (presumably)

fusr/your-name/bock

To delete a directory, see rmdir (I).

You can go up one level in the tree of files
by saying

chdir ..

is the name of the parent of whatever direc-
tory you are currently in. For completeness, *."
is an alternate name for the directory you are in.

"o
o

Using Files instead of the Terminal

Most of the commands we have seen so far
produce output on the terminal; some, like the
editor, also take their input from the terminal. It
is universal in UNIX that the terminal can be re-
placed by a file for either or both of input and
output. As one example, you could say

Is
1o get a list ¢” files. But you can also say
Is >filelist

10 get a list of your files in the file “filelist™.
(“filelist” will be created if it doesn’t already ex-
ist, or overwritten if it does.) The symbol “>" is
used throughout UNIX 10 mean *“put the output
on the following file, rather than on the termi-
nal”. Nothing is produced on the terminal. As
another example, you could concatenate several
files into one by capturing the output of cat in a
file:

cat fl f2 3 >temp

Similarly, the symbol *<" means to take
the input for a program from the following file,
instead of from the terminal. Thus, you could
make up a script of commonly used editing com-
mands and put them into a file called “script”.
Then you can run the script on a file by saying

ed file <script

Pipes

One of the novel contributions of UNIX is
the idea of a pipe. A pipe is simply a way to
connect the output of one program to the input
of another program, so the two run as a se-
quence of processes — a pipe-line.

For example,

pr fgh

will print the files *{™, “g” and “h", beginning
each on a new page. Suppose you want them
run together instead. You could say

cat f g h >temp
pr temp
rm temp

but this is more work than necessary. Clearly
what we want is to take the output of cat and
connect it to the input of pr. So let us use a
pipe:

cat f g h| pr

The vertical bar means to take the output from
cat, which would normally have gone to the ter-
minal, and put it into pr, which formats it neatly.

Any program that reads from the terminal
can read from a pipe instead; any program that
writes on the terminal can drive a pipe. You can
have as many elements in a pipeline as you
wish. '

Many UNIX programs are written so that
they will take their input from one or more files
if file arguments are given; if no arguments are
given they will read from the terminal, and thus
can be used in pipelines.

The Shell

We have already mentioned once or twice
the mysterious “shell,” which is in fact sh (I).
The shell is the program that interprets what you
type as commands and arguments. It also looks
after translating “*”, etc., into lists of filenames.

The shell has other capabilities too. For
example, you can start two programs with one
command line by separating the commands with

a semicolon: the shell recognizes the semicolon
and breaks the line into two commands. Thus

date; who

does both commands before returning with a
N%"'

You can also have more than one program
running simultaneously if you wish. For example,
if you are doing something time-consuming, like
the editor script of an earlier section, and you
don't want to wait around for the results before
starting something else, you can say

ed file <script &

The ampersand at the end of a command line
says “start this command running, then take
further commands from the terminal immediate-
ly.” Thus the script will begin, but you can do
something else at the same time. Of course, to
keep the output from interfering with what
you're doing on the terminal, it would be better
to have said

ed file <script >lines &

which would save the output lines in a file called
“lines™.

When you initiate a command with “&”,
UNIX replies with a number called the process
number, which identifies the command in case
you later want to stop it. If you do, you can say

kill process-number

You might also read ps (I).
You can say

(command-1; command-2; command-3) &

to start these commands in the background, or
you can start & background pipeline with

command-1 | command-2 &

Just as you can tell the editor or some
similar program to take its input from a file in-
stead of from the terminal, you can tell the shell
to read a file to get commands. (Why not? The
shell after all is just a program, albeit a clever
one.) For instance, suppose you want to set tabs
on your terminal, and find out the date and
who's on the system every time you log in.
Then you can put the three necessary com-
mands (tabs; date; who) into a file, let’s call it
“xxx”, and then run it with either

sh xxx
or

sh <xxx

This says 1o run the shell with the file “xxx™ as
input. The effect is as if you had typed the con-
tents of “xxx" on the terminal. (If this is to be
a regular thing, you can eliminate the need to
type “sh™; see chmod (1) and sh (1).)

The shell has quite a few other capabilities
as well, some of which we'll get to in the section
on programming.

11i. DOCUMENT PREPARATION

UNIX is extensively used for document
preparation. There are three major formatiing
programs, that is, programs which produce a text
with justified right margins, automatic page
numbering and litling, automatic hyphenation,
and the like. The simplest of these formatters is
roff, which in fact is simple enough that if you
type almost any text into a file and “roff it, you
will get plausibly formatted output. You can do
better with a little knowledge, but basically it's
easy 1o learn and use. We'll get back to roff
shortly.

nroff is similar 10 roff but does much less
for you automatically. It will do a great deal
more, once you know how to use it.

Both roff and nroff are designed to produce
output on terminals, line-printers, and the like.
The third formatter, troff (pronounced “tee-
roff”"), instead drives a Graphic Systems photo-
typesetter, which produces very high quality out-
put on photographic paper. This paper was
printed on the phototypesetter by troff.

Because nroff and troff are relatively hard
to learn to use effectively, several “packages”™ of
canned formatting requests are available which
let you do things like paragraphs, running titles,
multi-column output, and so on, with little effort.
Regrettably, details vary from system to system.

ROFF

The basic idea of roff (and of nroff and
troff, for that matier) is that the text to be for-
matted contains within it *“formatting com-
mands” that indicate in detail how the formatied
text is to look. For example, there might be

commands that specify how long lines are,.

whether to use single or double spacing, and
what running titles to use on each page. In gen-
eral, you don’t have to spell out all of the possi-
ble formatting details. Most of them have “de-
fault values™, which you will get if you say noth-
ing at all. For example, unless you take special
precautions, you'll get single-spaced output,
65-character lines, justified right margins, and 58

text lines per page when you roff a fite. This is
the reason that roff is so simple — most of the
decisions have already been made for you.

Some things do have 10 be done, however.
If you want a document broken into paragraphs,
you have to tell roff where to add the extra
blank lines. This is done with the *“sp” com-
mand:

this is the end of one paragraph.
Sp
This begins the next paragraph ...

In roff (and in nroff and trofl), formaiting com-
mands consist of a period followed by two
letters, and they must appear al the beginning of
a line, all by themselves. The “sp” command
tells roff to finish printing any of the previous
line that might be still unprinted, then print a
blank line before continuing. You can have
more space if you wish; “sp 2" asks for 2
spaces, and so on.

If you simply want to ensure that subse-
quent text appears on a fresh output line, you
can use the command “.br” (for “break”) in-
stead of “sp”.

Most of the other commonly-used roff
commands are equally simple. For example you
can center one or more lines with the “.ce” com-
mand.

ce
Title of Paper
sp 2

causes the title to be centered, then followed by
two blank lines. As with “sp”, *.ce” can be fol-
lowed by a number; in that case, that many in-
put lines are centered.

“.ul” underlines lines, and can also be fol-
lowed by a number:

ce 2

aul 2

An Earth-shaking Paper
Sp

John O Scientist

will center and underline the two text lines. No-
tice that the “sp” between them is not part of
the line count.

You can get multiple-line spacing instead
of the default single-spacing with the “.Is" com-
mand:

s 2

causes double spacing.

If you're typing things like tables, you will
not want the automatic filling-up and
justification of output lines that is done by de-
fault. You can turn this off with the command
*.nf” (no-fill), and then back on again with *“.f"
(fill). Thus

this section is filled by default.

.nf

here lines will appear just

as you typed them —

no extra spaces, no moving of words.
fi

Now go back to filling up oeutput lines.

You can change the line-length with *.II",
and the left margin (the indent) by “.in". These
are often used together 10 make offset blocks of
text:

=10

in +10 :

this text will be moved 10
spaces to the right and the
lines will also be shortened 10
characters from the right. The
“+"” and “=" mean to change
the previous value by that
much. Now revert:

1 +10

in ~10

Notice that “.ll +10" adds ten characters to the
line length, while *“.l 10" makes the line ten
characters /ong.

The “.ti” command indents (in either
direction) "just like *.in™, except for only one
line. Thus to make a new paragraph with a
10-character indent, you would say

Sp
i +10
New paragraph ...

You can put running titles on both top and
bottom of each page, like this:

-he "left top"center top"right top”
fo "left bottom"center bottom"right bottom®

The header or footer is divided into three parts,
which are marked off by any character you like.
(We used a double quote.) If there’s nothing
between the markers, that part of the title will
be blank. If you use a percent sign anywhere in
‘“he” or “.fo”, the current page number will be
inserted. So to get centered page numbers with
dashes around them, at the top, use

.he L. % L

You can skip to the top of a new page at any
time with the *“.bp" command; if *“.bp” is fol-
lowed by a number, that will be the new page
number.

The foregoing is probably enough about
roff for you to go off and format most everyday
documents. Read roff (1) for more details.

Hints for Preparing Documents

Most documents go through several ver-
sions (always more than you expected) before
they are finally finished. Accordingly, you
should do whatever possible to make the job of
changing them easy.

First, when you do the purely mechanical
operations of typing, type so subsequent editing
will be easy. Start each sentence on a new line.
Make lines short, and break lines at natural
places, such as after commas and semicolons,
ratner than randomly. Since most people change
documents by rewriting phrases and adding,
deleting and rearranging sentences, these precau-
tions simplify any editing you have to do later.

The second aspect of making change easy
is not to commit yourself to formatting details
too early. For example, if you decide that each
paragraph is to have a space and an indent of 10
characters, you might type, before each,

Sp
A +10

But what happens when later you decide that it
would have been better to have no space and an
indent of only 5 characters? It's tedious indeed
10 go back and patch this up.

Fortunately, all of the formatters let you
delay decisions until the actual moment of run-
ning. The secret is to define a new operation
(called a macro), for each formatting operation
you want to do, like making a new paragraph.
You can say, in all three formatters,

de PP

Sp
i +10

This defines “.PP” as a new roff (or nroff or troff)
operation, whose meaning is exactly

Sp
i +10

(The *“.” marks the end of the definition.)
Whenever “.PP” is encountered in the text, it is
as if you had typed the two lines of the
definition in place of it.

The beauty of this scheme is that now, if
you change your mind about what a paragraph
should look like, you can change the formatted
output merely by changing the definition of
* PP” and re-running the formatter.

As a rule of thumb, for all but the most
trivial jobs, you should type a document in terms
of a set of macros like “.PP”, and then define
them appropriately. As long as you have entered
the text in some systematic way, il can always be
cleaned up and re-formatted by a judicious com-
bination of editing and macro definitions. The
packages of formatting commands that we men-
tioned earlier are simply collections of macros
designed for particular formatting tasks.

One of the main differences between roff
and the other formatters is that macros in roff
can only be lines of text and formatting com-
mands. In nroff and troff, macros may have ar-
guments, so they can have different effects
depending on how they are called (in exactly the
same way that the “sp” command has an argu-
ment, the number of spaces you want).

Miscellany

In addition to the basic formatters, UNIX
provides a host of supporting programs. eqn and
neqn let you integrate mathematics into the text
of a document, in a language that closely resem-
bles the way you would speak it aloud. spell and
typo detect possible spelling mistakes in a docu-
ment. grep looks for lines containing a particular
text pattern (rather like the editor’s context
search does, but on a whole series of files). For
example,

grep "ingS" chap*

‘will find all lines ending in the letters “ing” in
the series of files “chap*”. (It is aimost always a
good practice to put quotes around the patiern
you're searching for, in case it contains charac-
ters that have a special meaning for the shell.)

we counts the words and (optionally) lines
in a set of files. tr translates characters into oth-
er characters; for example it will convert upper
to lower case and vice versa. This translates
upper into lower:

tr "[A-Z]" "[a-z]"

diff prints a list of the differences between
two files, so you can compare two versions of
something automatically (which certainly beats
proofreading by hand). sort sorts files in a
variety of ways; cref makes cross-references; ptx
makes a permuted index (keyword-in-context
listing).

- 11 -

Most of these programs are either indepen-
dently documented (iike eqn and neqn), or are
sufficiently simple that the description in the
UNIX Programmer’s Manual is adequate explana-
tion. '

IV. PROGRAMMING

UNIX is a marvelously pleasant and produc-
tive system for writing programs; productivity
seems to be an order of magnitude higher than
on other interaclive sysiems.

There will be no attempt made to teach
any of the programming languages available on
UNIX, but a few words of advice are in order.
First, UNIX is written in C, as is most of the ap-
plications code. If you are undertaking anything
substantial, C is the only reasonable choice.
More on that in a moment. But remember that
there are quite a few programs already written,
some of which have substantial power.

The editor can be made to do things that
would normally require special programs on oth-
er systems. For example, to list the first and last
lines of each of a set of files, say a book, you
could laboriously type

ed

e chapl.l
lp

$p

e chapl.2
lp

p

etc.

But instead you can do the job once and for all.
Type

Is chap* >temp

to get the list of filenames into a file. Then edit
this file to make the necessary series of editing
commands (using the global commands of ed),
and write it into “script”. Now the command

ed <script

-will produce the same output as the laborious

hand typing.

The pipe mechanism lets you fabricate
quite complicated operations out of spare parls
already built. For example, the first draft of the
spell program was (roughly)

cat.. (collect the files)

jrr .. (put each word on a new line,
delete punctuation, etc.)

| sort (into dictionary order)

| uniq (strip out duplicates)

| comm (list words found in text but
not in dictionary)

Programming the Shell

An option often overlooked by newcomers
is that the shell is itself a programming language,
and since UNIX already has a host of building-
block programs, you can sometimes avoid writ-
ing a special purpose program merely by piecing
together some of the building blocks with shell
command files,

As an unlikely example, suppose you want
to count the number of users on the machine
every hour. You could type

date
who | we -

every hour, and write down the numbers, but
that is rather primitive. The next step is prob-
ably to say

(date; who | we =1) > >users

which uses “>>" to append to the end of the
file “users”. (We haven't mentioned “> > be-
fore — it's another service of the shell.) Now all
you have to do is to put a loop around this, and
ensure that it's done every hour. Thus, place
the following commands into a file, say “count™:

: loop

(date; who | we =1) > >users
sleep 3600

goto loop

The command : is followed by a space and a la-
bel, which you can then goto. Notice that it’s
quite legal to branch backwards. Now if you is-
sue the command

sh count &

the users will be counted every hour, and you
can go on with other things. (You will have to
use kill to stop counting.)

If you would like “every hour” to be a
parameter, you can arrange for that 100:

: loop

(date; who | we = 1) > >users
sleep $1

goto loop

“$1” means the first argument when this pro-
cedure is invoked. If you say

-12-

sh count 60

it will count every minute. A shell program can
have up 10 nine arguments, *$1* through 89",

The other aspect of programming is condi-
tional testing. The if command can test condi-
tions and execute commands accordingly. As a
simple example, suppose you want to add to
your login sequence something to print your
mail if you have some. Thus, knowing that mail
is stored in a file called ‘mailbox’, you could say

if -r mailbox mail

This says “if the file ‘mailbox’ is readable, exe-
cute the mail command.”

As another example, you could arrange
that the “count™ procedure count every hour by
default, but allow an optional argument to speci-
fy a different time. Simply replace the “sleep
$1” line by

if $1x = x sleep 3600
if $1x != x sleep S$1

The construction
if$lx =x

tests whether “$1”, the first argument, was
present or absent.

More complicated conditions can be tested:
you can find out the status of an executed com-
mand, and you can combine conditions with
‘and’, ‘or’, ‘not’ and parentheses — see if (I).
You should also read shift(I) which describes
how to manipulate arguments to shell command
files.

Programming in C

As we said, C is the language of choice:
everything in UNIX is tuned to it. It is also a
remarkably easy language to use once you get
started. Sections II and IHI of the manual
describe the system interfaces, that is, how you
do 1/0 and similar functions.

You can write quite significant C programs
with the level of 1/0 and system interface
described in Programming in C: A Turorial, if you
use existing programs and pipes to help. For ex-
ample, rather than learning how to open and
close files you can (at least temporarily) write a
program that reads from its standard input, and
use cat to concatentate several files into it. This
may not be adequate for the long run, but for
the early stages it’s just right.

There are a number of supporting pro-
grams that go with C. The C debugger, cdb, is
marginally useful for digging through the dead

bodies of C programs. db, the assembly
language debugger, is actually more useful most
of the time, bul vou have to know more about
the machine and system to use it weil. The most
effective debugging tool is still careful thought,
coupled with judiciously placed print statements.

You can instrument C programs and thus
find out where they spend their time and what
parts are worth optimising. Compite the routines
with the “-p” option; after the test run use prof
to print an execution profile. The command
time will give you the gross run-time statistics of
a program, but it's not super accurate or repro-
ducible.

C programs that don't depend too much on
special features of UNIX can be moved to the
Honeywell 6070 and i8M 370 systems with mod-
est effort. Read The Gcos C Library by M. E.
Lesk and B. A. Barres for details.

Miscellany

If you have to use Fortran, you might con-
sider ratfor, which gives you the decent control
structures and free-form input that characterize
C, yet lets you write code that is still portable to
other environments. Bear in mind that UNIX
Fortran tends to produce large and relatively
slow-running programs. Furthermore, support-
ing software like db, prof, etc., are all virtually
useless with Fortran programs.

If you want to use assembly language (all
heavens forfend!), try the implementation
language LIL. which gives you many of the ad-
vantages of a high-level language, like decent
control flow structures, but still lets you get close
to the machine if you really want to.

If your application requires you to translate
a language into a set of actions or another
language, you are in effect building a compiler,
though probably a small one. In that case, you
should be using the yace compiler-compiler,
which helps you develop a compiler quickly.

V. UNIX READING LIST
General:

UNIX Programmer’s Manual (Ken Thompson,
Dennis Ritchie, and a cast of thousands). Lists
commands, system routines and interfaces, file
formats, and some of the maintenance pro-
cedures. You can’t live without this, although
you will probably only read section I.

The UNIX Time-sharing System (Ken Thompson,
Dennis Ritchie). CACM, July 1974. An over-
view of the system, for people interested in
operating systems. Worth reading by anyone

-13-

who programs. Contains a remarkable number
of one-sentence observations on how 10 do
things right.

Document Preparation:

A Tutorial Introduction to the uNix Text Editor.
(Brian Kernighan). Bell Laboratories internal
memorandum. Weak on the more esoteric uses
of the editor, but still probably the easiest way to
learn ed. '

Typing Documents on UNIX. (Mike Lesk). Bell
Laboratories internal memorandum. A macro
package to isolate the novice from the vagaries
of the formatting programs. If this specific pack-
age isn’t available on your system, something
similar probably is. This one works with both
nroff and troff.

Programming:

Programming in C: A Tutorial (Brian Ker-
nighan). Bell Laboratories internal memoran-
dum. The easiest way to start learning C, but it's
no help at all with the interface to the system

beyond the simplest 10. Should be read in con-
junction with

C Reference Manual (Dennis Ritchie). Bell La-
boratories internal memorandum. An excellent
reference, but a bit heavy going for the be-
ginner, especially one who has never used a
language like C.

Others:

D. M. Ritchie, UNIX Assembler Reference
Manual.

B. W. Kernighan and L. L. Cherry, A System for
Typesetting Mathematics, Computing Science
Tech. Rep. 17.

M. E. Lesk and B. A. Barres, The GCOS C Li-
brary. Bell Laboratories internal memorandum.
K. Thompson and D. M. Ritchie, Setting Up
UNIX.

M. D. Mcliroy, UNIX Summary.

D. M. Ritchie, The UNIX 1/0O System.

A. D. Hall, The M6 Macro Processor, Computing
Science Tech. Rep. 2.

J. F. Ossanna, NROFF User’s Manual — Second
Edition, Bell Laboratories internal memorandum.
D. M. Ritchie and K. Thompson, Regenerating
System Software.

B. W. Kernighan, Ratfor—A Rational Fortran,
Bell Laboratories internal memorandum.

M. D. Mcllroy, Synthetic English Speech by
Rule, Computing Science Tech. Rep. 14.

M. D. Mcliroy, A Manual for the TMG
Compiler-writing Language. Bell Laboratories

internal memorandum.

J. F. Ossanna, TROFF Users' Manual, Bell La-
boratories internal memorandum.

B. W. Kernighan, TROFF Made Trivial, Bell La-
boratories internal memorandum.

R. H. Morris and L. L. Cherry, Computer Detec-
tion of Typographical Errors, Computing Science
Tech. Rep. 18.

S. C. Johnson, YACC (Yet Another Compiler-
Compiler), Bell Laboratories internal memoran-
dum.

P. J. Plauger, Programming in LIL: A Tutorial,
Bell Laboratories internal memorandum.

Index

& (asynchronous process) 8
s (muitiple processes) 8 -
* (pattern match) §

[] (pattern match) 6

? (pattern match) 6

<> (redirect [/0) 7

>> (file append) 12
backslash (\) 2

cat (concatenate files) 4
cdb (C debugger) 12
chdir (change directory) 7
chmod (change protection) 7
command arguments 4
command files 8

cp (copy files) §

cref (cross reference) 11
date 2

db (assembly debugger) 13
delete (DEL) 2

diff (file comparison) 11
directories 7

document formatting 9
ed (editor) 3

editor programming 11
EOT (end of file) 3

eqn (mathematics) 11
erase character (#) 2

file system structure 6
filenames §

file protection 7

goto 12

grep (pattern matching) 11
if (condition test) 12
index 14

kill a program 8

kill a character (@) 2

-14-

lil (high-level assembler) 13
login 1

logout 2

Is (list file names) 4

macro for formatting 10
mail 2

multi-columns printing (pr) §
mv (move files) §

nrofl 9

on-line manual 3

opr (offline print) §
pathname 6

pattern match in filenames 5
pipes (|) 8

pr (print files) 4

prof (run-time monitor) 13
protection 7

ptx (permuted index) 11
pwd (working directory) 7
quotes 6

ratfor (decent Fortran) 13
readahead 2

reading list 13

redirect [/0 (<>) 7
RETURN key 1

rm (remove files) 5

rmdir (remove directory) 7
roff (text formatting) 9

root (of file system) 6

shell (command interpreter) 8
shell arguments ($) 12
shel!l programming 12

shift (shell arguments) 12
sleep 12

sort 1l

spell (find spelling mistakes)
stopping a program 2

stty (set terminal options) 2
tabs (set tab stops) 2
terminal types 1

time (time programs) 13

tr (translate characters) 11
troff (typesetting) 9

typo (find spelling mistakes) 11
wc (word count) 11

who (who is looged in) 2
write (1o a user) 3

yacc (compiler-compiler) 13

