RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

Although Fortran is not a pleasant language 10 use, it does have the ad-
vantages of universality and (usually) relative efficiency. The RATFOR language
attempts to conceal the main deficiencies of Fortran while retaining its desir-
able qualities, by providing decent control flow statements:

& slatement grouping
e if - else
e while, for and do for looping
® break and next for controlling loop exits
and some ‘‘syntactic sugar™: .
o free form input (multiple statements/line, automatic continuation)
® unobtrusive comment convention
e translation of >, >=, elc., into .GT., .GE,, etc.
e ‘“define” statement for symbolic parameters
® ‘“include” statement for including source files

RATFOR is implemented as a preprocessor which translates this language into
Fortran.

Once the control flow and cosmetic deficiencies of Fortran are hidden,
the resulting language is remarkably pleasant to use. RATFOR programs are
markedly easier to write, and to read, and thus easier lo debug, maintain and
modify than their Fortran equivalents.

It is readily possible 10 write RATFOR programs which are portable to oth-
er environments. RATFOR is written in itself in this way, so it is also portable;
versions of RATFOR are now running on computers of six different manufactur-
ers.

This paper discusses design criteria for a Fortr:n preprocessor, the RAT-
FOR language and its implementation, and user experience.

RATFOR — A Preprocessor for a Rational Fortran

Brian W. Kernighan

Bell Laboratories,
Murray Hill, New Jersey 07974

1. INTRODUCTION

Most programmers will agree that For-
tran is an unpleasant language to program
in, yel there are many occasions when they
are forced to use it. For example, Fortran is
often the only language thoroughly support-
ed on the local computer. Indeed, it is the
closest thing lo a universal programming
language currently available: with care it is
possible to write large, truly portable port-
able Fortran programs(l]). Finally, Fortran
is often the most “efficient” language avail-
able, particularly for programs requiring
much computation.

But Fortran is unpleasant. Perhaps
the worst deficiency is in the control flow
statements — conditional branches and
loops — which express the logic of the pro-
gram. The Fortran DO restricts the user 1o
going forward in an arithmetic progression.
Itis fine for *“1 to N in steps of | (or 2 or
..)”, but there is no direct way 1o go back-
wards, orseven (in ANSI Fortran(2]) to go
from 1 to N=1. And of course the DO is
useless if one's problem doesn’t map into an
arithmetic progression.

The conditional statements in Fortran
are primitive. The Arithmeltic IF forces the
user into at least two statement numbers
and two (implied) GOTO's; it leads 10 unin-
telligible code, and is eschewed by good
programmers. The Logical IF is better, in
that the test part can be stated clearly, but
hopelessly restrictive because the statement
that follows the IF can only be one Fortran
statement (with some further restrictions!).
And of course there can be no ELSE part to
a Fortran IF: there is no way to specify an
alternative action il the IF is not satisfied.

The result of these failings is that For-
tran programs must be written with
numerous labels and branches. The result-
ing code is particularly difficult to read and
understand, and thus hard to debug and
modify.

When one is faced with an unpleasant
language, a useful technique is 10 define a
new language that overcomes the
deficiencies, and to translate it into the un-
pleasant one with a preprocessor. This is
the approach taken with RATFOR. (The
preprocessor idea is of course not new, and
preprocessors for Fortran are especially po-
pular today. A conference on Fortran
preprocessors{3] held in late 1974 drew 31
papers.)

2. LANGUAGE DESCRIPTION

Design

RATFOR attempts to retain the merits
of Fortran (universality, portability,
efficiency) while hiding the worst Fortran
inadequacies. The language is Fortran ex-
cept for two aspects. First, since control
flow is central to any program, regardless of
the specific application, the primary task of
RATFOR is to conceal this part of Fortran
from the user, by providing decent control
flow structures. Second, since the prepro-
cessor must examine an entire program to
translate the control structure, it is possible
at the same time to clean up many of the
“cosmetic™ deficiencies of Fortran, and thus
provide a language which is easier and rnore
pleasant to read and write.

Beyond these two aspects — control
flow and cosmetics — RATFOR does nothing
about the host of other weaknesses of For-
tran. Although it would be straightforward
to extend it to provide character strings, for
example, tney are not needed by everyone,
and of course the preprocessor would be
harder to implement. Throughout, the
design principle which has determined what
should be in RATFOR and what should not
has been RATFOR doesn't know any Fortran.
Any language feature which would require
that RATFOR really understand Fortran has
been omitted. We will return to this point
in the section on implementation.

Even within the confines of control
flow and cosmelics, we have atiempted to
be selective in what features to provide.
The intent has been to provide a small set
of the most useful constructs, rather than to
throw in everything that has ever been
thought useful by someone.

The rest of this section contains an in-
formal description of the RATFOR language.
The control flow aspects will be quite fami-
liar to readers used to languages like Algol,
PL/I, Pascal, etc: similarly the cosmetic
changes are simple. We shall concentrate
on showing what the language looks like.

Statement Grouping

Fortran provides no way to group
statements together, short of making them
into a subroutine. The standard construc-
tion “if a condition is true, do this group of
things,” for example,

if(x > 100)
{ call error(*.."); err = 1; return }

cannot be written directly in Fortran. In-
stead a programmer is forced to translate
this relatively clear thought into murky For-
tran, by stating the negative condition and
branching around the group of statements:

if(x .le. 100) goto 10
call error(27h ...)
err = |
return

10

s

When the program doesn't work, or when it
must be modified, this must be translated
back into a clearer form before one can be
sure what it does,

RATFOR eliminates this error-prone
and confusing back-and-forth (ranslation;
the first form /s the way the computation is
written in RATFOR. A group of statements
can be treated as a unit by enclosing them
in the braces { and }. This is true
throughout the language: wherever a single
RATFOR statement can be used, there can be
several enclosed in braces. (Braces seem
clearer and less obtrusive than begin and
end and of course “end™ already has a For-
tran meaning.)

Cosmetics contribute to the readability
of code, and thus to its understandability.
The character *>" is clearer than “GT™, so
RATFOR translates il appropriately, along
with several other similar shorthands.
Although the construction "..." is recognized
by many Fortran compilers as a character
string, it is not allowed in ANS] Fortran, so
RATFOR converts it into the right number of
“H's"™: computers count better than people
do.

RATFOR is a free-form language: state-
ments may appear anywhere on a line, and
several may appear on one line if they are
separated by semicolons. The example
above could also be wrilten as

if(x > 100){
call error(" ... ")
err = |
return

No semicolon is needed at the end of each
line because RATFOR assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows
the if is a single statement (RATFOR or oth-
erwise), no braces are needed:

ifly <=s00& 2z <=00)
write(6,20) y, z

No continuation need be indicated because
the statement is clearly not finished on the
first line. In general RATFOR continues lines
when it seems obvious that they are not yet
done. (The continuation convention is dis-
cussed in detail later.)

The “‘else’* Clause

RATFOR provides an else statement to
handle the construction “if a condition is
true, do this thing, otherwise do that thing."

ifla <=1b)

{sw=0; write(..)a, b}
else

{sw=1; write(..) b, a}

The Fortran equivalent of this code is circu-
itous indeed:

if(a.gl.b)gool0
sw=10
write(...) a, b
goto 20

sw=|

write(...) b, a

10

20

This is a mechanical translation: shorter
forms exist, as they do for many similar si-
tuations. But all transiations suffer from the
same problem: since they are (ranslations,
they are less clear and understandable than
code that is not a translation. To under-
stand the Fortran version, one must scan
the entire program to make sure that no
other statement branches to statements 10
or 20 before one knows that indeed this is
an if-else construction. With the RATFOR
version, there is no question about how one
gets 1o the parts of the statement. The if-
else is a single unit, which can be read, un-
derstood and forgotien. The program says
what it means.

The syntax of the if statement is

if(legal Fortran condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The “legal
Fortran condition™ is anything that can le-
gally go into a Fortran Logical IF. RATFOR
does not check this clause, since it does not
know enough Fortran 10 know what is per-
mitted.

RATFOR does not provide a case state-
ment, since it may be readily simulated with
a series of else if statements:

if(...)

else if(...)

else

This is an example where the desire for
simplicity overcomes the desire to provide a
“complete™ set of statements.

The *‘do’* Statement

The do stalemenl in RATFOR is quile
similar 10 the nO statement in Fortran, ex-

cepl that it uses no statement number.
Thus
doi=1,n{
x(i) = 0.0
y(@i) =00
7(i) = 0.0

}

is the same as

dol0i=1n
x(i) =0.0
y(i) =00
2(i) = 0.0
10 continue

The syntax is:

do legal—Fortran—DO—1ext
Ratfor statement

The part that follows the keyword do has to
be something that can legally go into a For-
tran DO statement. Thus if a local version
of Fortran allows DO limits to be expressions
(which is not permitted in ANS! Fortran),
they can be used in a RATFOR do.

As with the if a single stalement need
not have braces around it. This code sets
an array 1o zero:

doi=1,n
x(i) = 0.0

“‘break’® and *‘next"’

RATFOR provides stalements for leav-
ing a loop early, and for beginning the nexlt
iteration. Preak causes an immediate exi
from the deo; in effect it is a branch to the
statement after the do. Next is a branch to
the bottom of the loop, so it causes the next
iteration to be done. For example, this code
skips over negative values in an array:

doi=1,n{
if(x(i) < 0.0)
next
——— process positive element ———

The *‘while"* Statement

One of the problems with the Fortran
PO statement is thal il insists upon being
done once, regardless of its limits, If a loop
begins “DO 1 = 2, 1" this will be done once
with 1 set 10 2, even though common sense
would suggest that perhaps it shouldn't be.
Of course a RATFOR do can be easily preced-
ed by a test

if(j <=k)
doi=jk {

;T

but this has to be a conscious aél. and is of-
ten overlooked by programmers.

A more serious problem with the DO
statement is that it encourages that a pro-
gram be written in terms of an arithmetic
progression with small positive steps, even
though that may not be the best way to
write it.

To overcome these difficulties, RATFOR
provides a while statement, which is simply
a loop: “‘while some condition is true, repeat
this group of statements™. It has no precon-
ceptions about why one is looping. For ex-
ample, this routine to compute sin(x) by the
Maclaurin series combines two termination
criteria.

function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x = x**3/3! + x**5/5!

sin = x
term = x
j=3

while(abs(term)>e & i<100){

-
s

term = —term * x**2 / float(i*(i—1))

sin = sin + term
i=i+2

return
end

Notice that if the routine is entered
with term already smaller than e, the loop
will be done zero times, that is, no attempt
will be made 10 compute x**3 and thus a
potential underflow is avoided. Since the

lest is made at the top of a while loop in-
stead of the bottom, a special case disap-
pears — the code works al one of ils boun-
daries.

As an aside, a sharp character “#" in
a line marks the beginning of a comment;
the rest of the line is comment. Comments
and code can co-exist on the same line —
one can make marginal remarks, which is
not possible with Fortran’s **C in column 1"
convention,

The syntax of the while statement is

while(legal Fortran condition)
Ratfor statement

As with the if, “legal Fortran condition” is
something that can go into a Fortran Logi-
cal IF.

The while encourages a style of coding
not normally practiced by Fortran program-
mers. For example, suppose nextch is a
function which returns the next input char-
acter both as a function value and in its ar-
gument. Then to find the first non-blank
character requires simply

while(nextch(ich) == iblank) ;

(A semicolon by itself is a null statement;
. is “EQ.".) When the loop is broken,
ich contains the first non-blank. Of course
the same code can be written in Fortran as

100 if(nextch(ich) .eq. iblank) goto 100

"
==

but few Fortran programmers even believe
this line is legal. The language at one's
disposal strongly influences how one thinks
about a problem.

The **for** Statement

The for statement is the final RATFOR
control flow construct. It attempts 1o carry
the separation of loop-body from reason-
for-looping a step further than the while. A
for statement allows explicit initialization
and increment steps as part of the state-
ment. For example, a DO loop is just

for(i=1; i<=n; i=i+l) ..

and the loop of the sine routine in the pre-

vious section could be re-written as

for(i=3; abs(term)>e & i <100; i=i+2)|
term = —term * x**2 / float(i*(i—1))
sin = sin + term

)

The initialization and increment of i have
been moved into the for stalement, making
it easier to see at a glance what controls the
loop.

The syntax of the for statement is

for (init ; condition : increment)
Ratfor statement

init is any single Fortran statement, which
gets done once before the loop begins. in-
crement is any single Fortran statement,
which gets done at the end of each pass
through the loop, before the test. condition
is again anything that is legal in a logical IF.
Any of init, condition, and increment may be
omitted, although the semicolons must
remain. A non-existent condition is trealed
as always true, so for(;;) is an indefinite re-
peat.

The for statement is particularly useful
for backward loops, chaining along lists,
loops that might be done zero times, and
similar things which are hard 1o express
with a DO statement, and obscure o write
out directly. For example, here is a ‘‘back-
wards DO loop™ to find the last non-blank
character on a card:

for(i=80;i>0;i=i-1)
if(card(i) != blank)
break

(*1=" is the same as “NE™). The code
scans the columns from 80 through 1o 1. If
a non-blank is found, the loop is immediate-
ly broken (break and next work in fer’s and
while’s just as in do's). If i reaches zero,
the card is all blank.

The increment need not be an arith-
metic progression; the foliowing program
walks along a list until a zero pointer is
found, adding up elements from a parallel
array of values:

sum = 0.0
for(i = first; i > 0;i = ptr(i))
sum = sum + value(i)

Notice that the code works correctly if the
list is empty. Again, placing the test at the
lop of a loop instead of the botiom elim-
inates a potential boundary error.

Cosmetics

Free-form Input: Statements can be placed
anywhere on a line; long statements are
continued automatically. Multiple state-
ments may appear on one line, if they are
separated by semicolons. No semicolon is
needed at the end of a line, if RATFOR can
make some reasonable guess about whether
the statement ends there. Lines ending
with any of the characters

/|

L 3

&

are assumed to be continued on the next
line.

Any statement that begins with an
all-numeric field is assumed to be a Fortran
label, and placed in columns -5 upon out-
put. Thus

write(6,100); 100 format("hello")

+

is converted into

write(6,100)
100 format(Shhello)

Translation Services: Text enclosed in
matching single or double quotes is convert-
ed to nH... but is otherwise unaltered (ex-
cept for formatling — it may get split across
card boundaries during the reformalling
process).

Any line that begins with the charac-
ter ‘%’ is left absolutely unaltered except for
stripping off the ‘%’ and moving the line
one position to the left. This is useful for
inserting control cards, and other things that
should not be transmogrified (like an exist-
ing Fortran program).

Symbols like ‘> or ‘>=" are translat-
ed in the obvious manner unless they occur
within either single or doublte quotes or on a

line beginning with a ‘%', ‘&’ and ‘I' be-
come “.AND" and “OR", The brackets [and
] are synonyms for the braces { and }.

define: Any string of alphanumeric charac-
ters can be defined as a name; thereafter,
whenever that name occurs in the input
(delimited by non-alphanumerics) it is re-
placed by the rest of the definition line
(comments are stripped off). define is typi-
cally used 1o make symbolic parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS,COLS)
if(i > ROWS | j > COLS) ...

include: The statement
include filenumber

inserts the file found on input stream
filenumber into the RATFOR input in place of
the include statement.

3. IMPLEMENTATION

RATFOR was originally written in C[4),
a high-level language reminiscent of BCPL,
on the UNIX operating system[5]. The
language is specified by a context free gram-
mar and the compiler constructed using the
YACC compiler-compiler(6).

The RATFOR grammar is simple and
straightforward:

prog : stat
| prog stat
stat : if(...) stat

| if(...) stat else stat
| while(...) stat

| for(...; ...; ...) stat

| do ..
| break

| next

| digits stat

| { prog }

| anything unrecognizable

The observation that RATFOR knows no
Fortran follows directly from the production
that says a statement is “‘anything unrecog-
nizable”. In fact most of Fortran falls into
this category, since any statement that does
not begin with one of the keywords is by

definition *unrecognizable.”

Code generation is also simple. If the
first token on a source line is not a keyword
(like if, else, etc.) the entire statement is
simply copied to the output with appropriate
character translation and formatting. (Lead-
ing digits are treated as a label.) Keywords
cause only slightly more complicated ac-
tions. For example, when If is recognized,
two consecutive labels L and L+1 are gen-
erated and the value of L is stacked. The
condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The statement part of the If is
then translated. When the end of the state-
ment is encountered (which may be some
distance away and include nested if's, of
course), the code

L continue

is generated, unless there is an else clause,
in which case the code is

goto L+1

L continue

In this latter case, the code
L+1 continue

is produced after the statement part of the
else. Code generation for the various loops
is equally simple.

One might argue that more care
should be taken in code generation. For ex-
ample, if there is no trailing else,

ifti>0)x=a
should be left alone, not converted into

if(.not. (i .gt. 0)) goto 100
XxX=a
100 continue

But what are optimizing compilers for, if not
to improve code? It is a rare program
indeed where this kind of “inefficiency™
will make a large difference. In the few
cases where it does, the offending lines can
be protected by ‘%’

The use of a compiler-compiler is
definitely the preferred method of software
development. The language is well-defined,
~with no syntactic irregularities. Implemen-
tation is quite simple; the original construc-
tion took under a week. However the
language is sufficiently simple that an ad hoc
recognizer could be readily constructed 1o
do the same job if no compiler-compiler
were available.

The C version of RATFOR is used on
our local Honeywell 6070 and pop-11. C
programs are not portable, however, and
there was a need for a RATFOR that could be
moved to other machines. A new version
of RATFOR was written in itself and
bootstrapped with the C version. The RAT-
FOR version was written so as to translate
into the portable subset of Fortran
described in [1], so it is portable. This code
has been run essentially without change on
the machines of six different vendors. (The
main restrictions of the portable subset are:
only one character per machine word; sub-
scripts in the form c*vx¢; avoiding expres-
sions in places like DO loops; consistency in
subroutine argument usage, and in COMMON
declarations. RATFOR itself will not gratui-
tously generate non-standard Fortran.)

The RATFOR version is about 1500
lines of RATFOR (compared to about 750
lines of C); this compiles into 2500 lines of
Fortran. Both figures are deceptive, howev-
er, since the compiled code contains un-
necessary occurrences of COMMON declara-
tions and numerous CONTINUE statements
that are never referenced. Similarly the
RATFOR source uses white space generously
in an attempt to be readable. The expan-
sion ratio seems typical in spite of this.

The execution time of the RATFOR
version is dominated by three routines. Six-
ty percent of the time is spent in two
routines that read and write cards; twenty
percent is spent deciding whether input
characters are letters, digits, or others.
Clearly these three routines could be re-
placed by machine coded local versions; un-
less this is done, the efficiency of other
parts of the translation process is irrelevant.
It does confirm the folk-theorem that 10%
of the code takes 90% of the run time.

4. EXPERIENCE

Good Things

Al the moment there are perhaps forty
RATFOR users at Bell Labs. “It's so much
better than Fortran™ is the most common
response of users when asked how well RAT-
FOR meets their needs. Although cynics
might consider this to be vacuous, it does
seem to be true that decent control flow and
cosmetics converts Fortran from a bad
language into quite a reasonable one, assum-
ing that Fortran data structures are adequate
for the task at hand.

One interesting and encouraging fact
is that programs written in RATFOR tend to
be as readable as programs writlen in more
modern languages like Pascal. For example,
here is a RATFOR implementation of the
linear table search discussed by Knuth [7}:

Alm+1) =x
for(i=1; A} !=x;i=i+1);
if(i >m){

m=i

BG) =1
}
else

BG) = BG) + |

Once one is freed from the shackles of
Fortran’s clerical detail and rigid input for-
mat, it is easy 10 write code that is readable,
even esthetically pleasing.

Although there are no quantitative
results, users feel that coding in RATFOR is
at least twice as fast as in Fortran. More
important, debugging and subsequent revi-
sion are much faster than in Fortran. Partly
this is simply because the code can be read.
The looping statements which test at the
top instead of the bottom seem to eliminate
or at least reduce the occurrence of a wide
class of boundary errors. And of course it is
easy to do structured programming in RAT-
FOR: this self-discipline also contributes
markedly to reliability.

Bad Things

The biggest single problem is that For-
lran syntax errors are not detected by RAT-
FOR but by the local Fortran compiler. The
compiler then prints a message in terms of
the generated Fortran, and in some cases
this may be difficult to relate back to the
offending RATFOR line, especially if the im-
plementation conceals the generated For-
tran. This problem could be dealt with by
lagging each generated line with some indi-
cation of the source line that created it, but
this is inherently implementation-
dependent, so no action has yet been taken.
Users also complain that the generated For-
tran is ‘‘unreadable’ because it is not taste-
fully formatted and contains extraneous
CONTINUE statements.

There are a number of implementa-
tion weaknesses that are a nuisance, espe-
cially to new users. For example, the con-
tinuation convention says that a line which
ends with a slash /" should be continued,
since the slash is probably an arithmetic
operator. But the Fortran DATA statement
also ends with a slash. Since RATFOR truly
doesn’t know any Fortran it cannot reliably
recognize when it is dealing with a DATA
statement. Thus one must terminate each
DATA statement with a semicolon. Another
less serious difficulty is that keywords are
reserved. This rarely makes any difference,
except for those hardy souls who want to
use an Arithmetic IF. It is hard to work up
much sympathy for them, however.

The construction
if(..)
stop

else
thing

or return or goto

generates an inaccessible GOTO after the
STOP statement. Most Fortran compilers
produce a warning diagnostic, which is
disconcerting the first time encountered.
The problem may be solved by removing
the else, which is logically unnecessary.

A few standard Fortran constructions
are not accepted by RATFOR, and this is per-
ceived as a problem by users with a large
corpus of existing Fortran programs. Pro-

lecting every line with a ‘%’ is not really a
complete solution, although it serves as a
stop-gap.

S. CONCLUSIONS

RATFOR demonstrates that with mod-
est effort it is possible to convert Fortran
from a bad language into quite a good one.
A preprocessor is clearly a useful way to ex-
lend or ameliorate the facilities of a base
language.

When designing a language, it is im-
portant (o concentrate on the essential re-
quirement of providing the user with the
best language possible for a given effort.
One must avoid throwing in “features™ —
things which the user may trivially con-
struct within the existing framework. For
example, RATFOR does not provide a repeat
statement which is a loop with its test at the
bottom. This statement encourages pro-
grams which fail at their boundaries. In the
few cases where it is needed, it can be easily
simulated with an infinite loop and a test
and break at the bottom.

One must also avoid getting side-
tracked on irrelevancies. For instance it
seems pointless for RATFOR 10 prepare a
neatly formatted listing of either its input or
its output. The user is presumably capable
of the self-discipline required to prepare
neat input that reflects his thoughts. It is
much more important that the language
provide free-form input so he can format it
neatly. No one should read the output any-
way except in the most dire circumstances.

Acknowledgements

C. A. R. Hoare once said that *“One
thing [the language designer] should not do
is 10 include untried ideas of his own.” RAT-
FOR follows this precept very closely —
everything in it has been stolen from some-
one else. Most of the control flow struc-
tures are taken directly from the language
Cl4) developed by Dennis Ritchie; the com-
ment and continuation conventions are
adapted from Altran[8).

I am grateful to Stuart Feldman, whose
patient simulation of an innocent user led to
several design improvements and the eradi-

cation of bugs. He also transiated the C
parse-tables and YACC parser into Fortran
for the RATFOR version of RATFOR.

References

(1

(2]

(3]

(4]
(s)

]

m

(8]

B. G. Ryder, The PFORT Verifier,
Software —Practice & Experience,
Oct.-Dec. 1974.

American National Standard Fortran.
American National Standards Institute,
New York, 1966.

Workshop on Fortran Preprocessors
for Numerical Software. Pasadena,
Calif., Nov. 1974,

D. M. Ritchie, C Reference Manual.
Bell Labs internal memorandum, 1974.

D. M. Ritchie and K. L. Thompson,
The UNIX Time-sharing System.
CACM, July 1974,

S. C. Johnson, YACC — Yet Another
Compiler-Compiler. Bell Labs internal
memorandum, 1974,

D. E. Knuth, Structured Programming
with goto Statements. Computing Sur-
veys, Dec. 1974,

A. D. Hall, The Altran System for Ra-
tional Function Manipulation — A
Survey. CACM, Aug. 1971,

