C Reference Manual

Dennis M. Ritchie

Bell Telephone Laboratories
Murray Hill, New Jersey 07974

1. Introduction

C is a computer language based on the earlier language B [1]. The languages and their compilers
differ in two major ways: C introduces the notion of types, and defines appropriate extra syntax and se-
mantics; also, C on the PDP-11 is a true compiler, producing machine code where B produced interpre-
tive code.

Most of the software for the UNIX time-sharing system [2] is written in C, as is the operating system
itself. C is also available on the HIS 6070 computer at Murray Hill, using a compiler written by A.
Snyder and currently maintained by S. C. Johnson. A compiler for the 1BM System/360/370 series is
under construction.

This is a manual only for the C language itself as implemented on the PDP-11. Hints are given occa-
sionally in the text of implementation-dependent features, and an appendix summarizes the differences
between the Honeywell and DEC impiementations; it also contains some known bugs in each.

The UNIX Programmer’s Manual [3] describes the library routines available to C programs under
UNIX, and also the procedures for compiling programs under that system. ‘“The Gcos C Library” by
Lesk and Barres [4] describes routines available under that system as well as compilation procedures.
Many of these routines, particularly the ones having to do with 1/0, are also provided under UNIX. Fi-
nally, “Programming in C— A Tutorial,” by B. W. Kernighan [5], is as useful as promised by its title
and the author’s previous introductions to allegedly impenetrable subjects.

2. Lexical conventions

There are six kinds of tokens: identifiers, keywords, constants, strings, expression operators, and oth-
er separators. In general blanks, tabs, newlines, and comments as described below are ignored except
as they serve to separate tokens. At ieast one of these characters is required to separate otherwise adja-
cent identifiers, constants, and certain operator-pairs.

If the input stream has been parsed into tokens up to a given character, the next token is taken to
include the longest string of characters which could possibly constitute a token.

2.1 Comments
The characters /+ introduce a comment, which terminates with the characters */.

2.2 Identifiers (Names)

An identifier is a sequence of letters and digits; the first character must be alphabetic. The under-
score “_” counts as alphabetic. Upper and lower case letters are considered different. No more than
the first eight characters are significant, and only the first seven for external identifiers.

2.3 Keywords
The following identifiers are reserved for use as keywords, and may not be used otherwise:

C Reference Manual - 2

int break
char continue
float It
double else
struct for
auto do
extern while
register switch
static case
goto default
return entry
sizeof

The entry keyword is not currently implemented by any compiler but is reserved for future use.

2.3 Constants
There are several kinds of constants, as follows:

2.3.1 Integer constants

An integer constant is a sequence of digits. An integer is taken to be octal if it begins with O, de-
cimal otherwise. The digits 8 and 9 have octal value 10 and 11 respectively.

2.3.2 Character constants

A character constant is 1 or 2 characters enclosed in single quotes ““’”. Within a character constant
a single quote must be preceded by a back-slash “\". Certain non-graphic characters, and “\” itself,
may be escaped according to the following table:

BS \b
NL \n
CR \r
HT \t
ddd \ddd
\ A\

The escape “\ddd” consists of the backslash followed by 1, 2, or 3 octal di.gits which are taken to specg-
fy the value of the desired character. A special case of this construction is “\0” (not followed by a di-
git) which indicates a null character.

Character constants behave exactly like integers (not, in particular, like objects of character type). In
conformity with the addressing structure of the PDP-11, a character constant of length 1 has the code
for the given character in the low-order byte and O in the high-order byte; a character constant of
length 2 has the code for the first character in the low byte and that for the second character in the
high-order byte. Character constants with more than one character are inherently machine-dependent
and should be avoided.

2.3.3 Floating constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e, and an optic_mal-
ly signed integer exponent. The integer and fraction parts both consist of a sequence pf digits. Either
the integer part or the fraction part (not both) may be missing; either the decimal point or t_he e and
the exponent (not both) may be missing. Every floating constant is taken to be double-precision.

2.4 Strings

A string is a sequence of characters surrounded by double quotes “""”. A string has the type array-
of-characters (see below) and refers to an area of storage initialized with the given characters. The
compiler places a null byte (\0) at the end of each string so that programs which scan the string can
find its end. In a string, the character “"”* must be preceded by a “\”; in addition, the same escapes
as described for character constants may be used.

C Reference Manual - 3

3. Syntax notation

In the syntax notation used in this manual, syntactic categories are indicated by italic type, and
literal words and characters in gothic. Alternatives are listed on separate lines. An optional terminal
or non-terminal symbol is indicated by the subscript “opt,” so that

{ expression,,)

would indicate an optional expression in braces.

4. What's in a Name?

C bases the interpretation of an identifier upon two attributes of the identifier: its srorage class and its
type. The storage class determines the location and lifetime of the storage associated with an identifier;
the type determines the meaning of the values found in the identifier’s storage.

There are four declarable storage classes: automatic, static, external, and register. Automatic vari-
ables are local to each invocation of a function, and are discarded on return; static variables are local to
a function, but retain their values independently of invocations of the function; external variables are
independent of any function. Register variables are stored in the fast registers of the machine; like au-
tomatic variables they are local to each function and cdisappear on return.

C supports four fundamental types of objects: characters, integers, singie-, and double-precision
floating-point numbers.

Characters (declared, and hereinafter called, char) are chosen from the ASClI set; they occupy
the right-most seven bits of an 8-bit byte. it is also possible to interpret chars as signed, 2’s
complement 8-bit numbers.

Integers (int) are represented in 16-bit 2°s complement notation.

Singse precision floating point (float) quantities have magnitude in the range approximately
10="° or 0; their precision is 24 bits or about seven decimai digits.

Double-precision floating-point (double) quantities have the same range as floats and a preci-
sion of 56 bits or about 17 decimal digits.

Besides the four fundamental types there is a conceptually infinite class of derived types constructed
from the fundamental types in the following ways:

arrays of objects of most types;

Junctions which return objects of a given type;
pointers to objects of a given type;

Structures containing objects of various types.

In general these methods of constructing objects can be applied recursively.

5. Objects and Ivalues

An object is a manipulatable region of storage; zn ivalue is an expression referring to an object. An
obvious example of an Ivalue expression is an identifier. There eve operators which yield Ivalues: for
example, if E is an expression of pointer type, then *E is an lvalue expression referring to the object to
which E points. The name “lvalue” comes from the assignment expression “El = E2” in which the
left operand E1 must be an lvalue expression. The discussion of each operator below indicates wheth-
er it expects lvalue operands and whether it yields an lvalue.

6. Conversions

A number of operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from such conver-
sions.

C Reference Manual - 4

6.1 Characters and integers

A char object may be used anywhere an int may be. In all cases the char is converted to an int by
propagalting its sign through the upper 8 bits of the resultant integer. This is consistent with the two’s -
complement representation used for both characters and integers. (However, the sign-propagation
feature disappears in other implementations.)

6.2 Float and double

All floating arithmetic in C is carried out in double-precision; whenever a float appears in an expres-
sion it is lengthened to double by zero-padding its fraction. When a double must be converted to
float, for example by an assignment, the double is rounded before truncation to float iength.

6.3 Float and double; integer and character

All ints and chars may be converted without loss of significance to float or double. Conversion of
float or double to int or char takes place with truncation towards 0. Erroneous results can be expected
if the magnitude of the result exceeds 32,767 (for int) or 127 (for char).

6.4 Pointers and integers

Integers and pointers may be added and compared; in such a case the int is converted as specified in
the discussion of the addition operator.

Two pointers to objects of the same type may be subtracted; in this case the result is converted to
an integer as specified in the discussion of the subtraction operator.

7. Expressions ,

The precedence of expression operators is the same as the order of the major subsections of this sec-
tion (highest precedence first). Thus the expressions referred to as the operands of + (§7.4) are those
expressions defined in §§7.1—7.3. Within each subsection, the operators have the same precedence.
Left- or right-associativity is specified in each subsection for the operators discussed therein. The pre-
cedence and asscciativity of all the expression operators is summarized in an appendix.

Otherwise the order of evaluation of expressions is undefined. In particular the compiler considers
itself free to compute subexpressions in the order it believes most efficient, even if the subexpresszons
involve side effects.

7.1 Primary expressions -
Primary expressions involving ., —>, subscripting, and function calls group left to right.

1.1.1 identifier

An identifier is a primary expression, provided it has been suitably declared as discussed below. Its
type is specified by its declaration. However, if the type of the identifier is ‘‘array of ...”, then the
value of the identifier-expression is a pointer to the first object in the array, and the type of the expres-
sion is “‘pointer to ...”. Moreover, an array identifier is not an lvalue expression.

Likewise, an identifier which is declared “function returning ...”, when used except in the function-
name position of a call, is converted to “pointer to function returning ...”

7.1.2 constant

A decimal, octal, character, or floating constant is a primary expression. Its type is int in the first
three cases, double in the last.

7.1.3 string

A string is a primary expression. Its type is originally “‘array of char’; but following the same rule
as in §7.1.1 for identifiers, this is modified to ‘“‘pointer to char” and the result is a pointer to the first
character in the string.

C Reference Manual - 5

7.1.4 (expression)

A parenthesized expression is a primary expression whose type and value are identical to those of
the unadorned expression. The presence of parentheses does not affect whether the expression is an
lvalue.

1.1.5 primary-expression [expression)

A primary expression followed by an expression in square brackets is a primary expression. The in-
tuitive meaning is that of a subscript. Usually, the primary expression has type “‘pointer to ...”, the
subscript expression is int, and the type of the result is **...". The expression “E1[E2]” is identical
(by definition) to ** ((E1)+ (E2)). All the clues needed to understand this notation are contained
in this section together with the discussions in §§ 7.1.1, 7.2.1, and 7.4.1 on identifiers, *, and + respec-
tively; §14.3 below summarizes the implications.

1.1.6 primary-expression (expression-list,,,)

A function call is a primary expression followed by parentheses containing a possibly empty,
comma-separated list of expressions which constitute the actual arguments to the function. The pri-
mary expression must be of type ‘“‘function returning ...”, and the result of the function call is of type
*..." As indicated below, a hitherto unseen identifier followed immediately by a left parenthesis is
contextually declared to represent a function returning an integer; thus in the most common case,
integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call; any of type char are
converted to int.

In preparing for the call to a function, a copy is made of each actual parameter; thus, all argument-
passing in C is strictly by value. A function may change the values of its formal parameters, but these
changes cannot possibly affect the values of the actual parameters. On the other hand, it is perfectly
possible to pass a pointer on the understanding that the function may change the value of the object to
which the pointer points.

Recursive calls to any function are permissible.

1.1.7 primary-ivalue . member-of-structure)

An lvalue expression followed by a dot followed by the name of a member of a structure is a pri-
mary expression. The object referred to by the lvalue is assumed to have the same form as the struc-
ture containing the structure member. The result of the expression is an Ivalue appropriately offset
from the origin of the given lvalue whose type is that of the named structure member. The given
Ivalue is not required to have any particular type.

Structures are discussed in §8.5.

1.1.8 primary-expression — > member-of-structure

The primary,expression is assumed to be a pointer which points to an object of the same form as the
structure of which the member-of-structure is a part. The result is an lvalue appropriately offset from
the origin of the pointed-to structure whose type is that of the named structure member. The type of
the primary-expression need not in fact be pointer; it is sufficient that it be a pointer, character, or in-
teger.

Except for the relaxation of the requirement that E1 be of pointer type, the expression
“E1->MOS" is exactly equivalent to “‘(*E1).MOS”.

7.2 Unary operators
Expressions with unary operators group right-to-left.

1.2.1 = expression

The unary * operator means indirection: the expression must be a pointer, and the result is an Ivalue
referring to the object to which the expression points. If the type of the expression is ‘“‘pointer to ...”,
the type of the result is *...”.

C Reference Manual - 6

1.2.2 & Ivalue-expression

The result of the unary & operator is a pointer to the object referred to by the lvalue-expression. If
the type of the lvalue-expression is *...”, the type of the result is “pointer to ...”.

1.2.3 — expression

The result is the negative of the expression, and has the same type. The type of the expression
must be char, int, float, or double.

7.2.4 \ expression

The result of the logical negation operator ! is 1 if the value of the expression is 0, 0 if the value of
the expression is non-zero. The type of the result is int. This operator is applicable only to ints or
chars.

1.2.5 ~ expression

The ~ operator yields the one’s complement of its operand. The type of the expression must be int
or char, and the result is int.

71.2.6 ++ Ivalue-expression

The object referred to by the Ivalue expression is incremented. The value is the new value of the
Ivalue expression and the type is the type of the lvalue. If the expression is int or char, it is incre-
mented by 1; if it is a pointer to an object, it is incremented by the length of the object. ++ is appli-
cable only to these types. (Not, for example, to float or double.)

1.2.7 —— Ivalue-expression
The object referred to by the lvalue expression is decremented analogously to the ++ operator.

1.2.8 Ivalue-expression ++

The result is the value of the object referred to by the lvalue expression. After the result is noted,
the object referred to by the lvalue is incremented in the same manner as for the prefix ++ operator:
by 1 for an int or char, by the length of the pointed-to object for a pointer. The type of the result is
the same as the type of the lvalue-expression.

1.29 Ivalue-expression ——

The result of the expression is the value of the object referred to by the the lvalue expression. After
the resuit is noted, the object referred to by the lvalue expression is decremented in a way analogous
to the postfix ++ operator. .

7.2.10 sizeof expression

The sizeof operator yields the size, in bytes, of its operand. When applied to an array, the result is
the total num):er of bytes in the array. The size is determined from the declarations of the objects in
the expression. This expression is semantically an integer constant and may be used anywhere a con-
stant is required. Its major use is in communication with routines like storage allocators and [/O sys-
tems.

7.3 Multiplicative operators
The multiplicative operators *, /, and % group left-to-right.

1.3.1 expression * expression

The binary * operator indicates muitiplication. If both operands are int or char, the result is int; if
one is int or char and one float or double, the former is converted to double, and the result is double;
if both are float or double, the result is double. No other combinations are allowed.

C Reference Manual - 7

7.3.2 expression / expression
The binary / operator indicates division. The same type considerations as for multiplication apply.

1.3.3 expression % expression

The binary % operator yields the remainder from the division of the first expression by the second.
Both operands must be int or char, and the result is int. In the current implementation, the remainder
has the same sign as the dividend.

7.4 Additive operators
The additive operators + and — group left-to-right.

71.4.1 expression + expression

The result is the sum of the expressions. If both operands are int or char, the result is int. If both
are float or double, the result is double. If one is char or int and one is float or double, the former is
converted to double and the result is double. If an int or char is added to a pointer, the former is con-
verted by multiplying it by the length of the object to which the pointer points and the result is a
pointer of the same type as the original pointer. Thus if P is a pointer to an object, the expression
“P+1" is a pointer to another object of the same type as the first and immediately following it in
storage.

No other type combinations are aliowed.

1.4.2 expression — expression

The result is the difference of the operands. If both operands are int, char, float, or double, the
same type considerations as for -+ apply. If an int or char is subtracted from a pointer, the former is
converted in the same way as explained under + above.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the
length of the object) to an int representing the number of objects separating the pointed-to objects.
This conversion will in general give unexpected results unless the pointers point to objects in the same
array, since ‘pointers, even to objects of the same type, do not necessarily differ by a multiple of the
object-length.

7.5 Shift operators
The shift operators < < and > > group left-to-right.

1.5.1 expression < < expression
1.5.2 expression > > expression

Both operands must be int or char, and the result is int. The second operand should be non-
negative. The value of “E1<<E2” is El (interpreted as a bit pattern 16 bits long) left-shifted E2
bits; vacated bits are O-filled. The value of “E1>>E2” is El (interpreted as a two’s complement,
16-bit quantity) arithmetically right-shifted E2 bit positions. Vacated bits are filled by a copy of the
sign bit of E1. [Note: the use of arithmetic rather than logical shift does not survive transportation
between machines.]

7.6 Relational operators
The relational operators group left-to-right, but this fact is not very useful; “a<b<c” does not mean
what it seems to.

7.6.1 expression < expression
7.6.2 expression > expression
1.6.3 expression <= expression
1.6.4 expression > = expression

The operators < (less than), > (greater than), <= (less than or equal to) and >= (greater than or
equal to) all yield 0 if the specified relation is false and 1 if it is true. Operand conversion is exactly
the same as for the + operator except that pointers of any kind may be compared; the result in this
case depends on the relative locations in storage of the pointed-to objects. It does not seem to be very
meaningful to compare pointers with integers other than 0.

C Reference Manual - 8

1.7 Equality operators
1.7.1 expression = = expression
1.1.2 expression |= expression

The == (equal to) and the != (not equal to) operators are exactly analogous to the relational opera-
tors except for their lower precedence. (Thus “a<b ==c<d"” is | whenever a<b and c<d have the
same truth-value).

1.8 expression & expression

The & operator groups left-to-right. Both operands must be int or char; the result is an int which is
the bit-wise logical and function of the operands.

7.9 expression " expression

The ° operator groups left-to-right. The operands must be int or char; the result is an int which is
the bit-wise exclusive or function of its operands.

7.10 expression | expression

The | operator groups left-to-right. The operands must be int or char; the result is an int which is
the bit-wise inclusive or of its operands.

7.11 expression && expression

The && operator returns 1 if both its operands are non-zero, 0 otherwise. Unlike &, §& guarantees
left-to-right evaluation; moreover the second operand is not evaluated if the first operand is 0.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer.

7.12 expression | expression

The Il operator returns 1 if either of its operands is non-zero, and 0 otherwise. Unlike |, Il guaran-
tees left-to-right evaluation; moreover, the second operand is not evaluated if the value of the first
operand is non-zero.

The operands need not have the same type, but each must have one of the fundamental types or be
a pointer.

7.13 expression ? expression : expression

Conditional expressions group left-to-right. The first expression is evaluated and if it is non-zero,
the result is the value of the second expression, otherwise that of third expression. If the types of the
second and third operand are the same, the result has their common type; otherwise the same conver-,
sion rules as for + apply. Only one of the second and third expressions is evaluated.

7.14 Assignment operators

There are 3-ilumber of assignment operators, all of which group right-to-left. All require an lvalue as
their left operand, and the type of an assignment expression is that of its left operand. The value is
the value stored in the left operand after the assignment has taken place.

7.14.1 Ivalue = expression

The value of the expression replaces that of the object referred to by the lvalue. The operands need
not have the same type, but both must be int, char, float, double, or pointer. If neither operand is a
pointer, the assignment takes place as expected, possibly preceded by conversion of the expression on
the right.

When both operands are int or pointers of any kind, no conversion ever takes place; the value of the
expression is simply stored into the object referred to by the lvalue. Thus it is possible to generate
pointers which will cause addressing exceptions when used.

C Reference Manual - 9

1.14.2 Ivalue = + expression
7.14.3 Ivalue = — expression
7.14.4 Ivalue == expression
1.14.5 Ivalue =/ expression
7.14.6 Ivalue =% expression
1.14.7 Ivalue => > expression
1.14.8 Ivalue = < < expression
1.149 Ivalue =& expression
1.14.10 /value =" expression
7.14.11 Ivalue = | expression
The behavior of an expression of the form “El =op E2” may be inferred by taking it as equivalent
to “El = El op E2"; however, El is evaluated only once. Moreover, expressions like “i =+ p” in
which a pointer is added to an integer, are forbidden.

7.15 expression , expression

A pair of expressions separated by a comma is evaluated left-to-right and the value of the left ex-
pression is discarded. The type and value of the result are the type and value of the right operand.
This operator groups left-to-right. It should be avoided in situations where comma is given a special
meaning, for example in actual arguments to function calls (§7.1.6) and lists of initializers (§10.2).

8. Declarations

Declarations are used within function definitions to specify the interpretation which C gives to each
identifier; they do not necessarily reserve storage associated with the identifier. Declarations have the
form

declaration:
decl-specifiers declarator-listm :

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers consist
of at most one type-specifier and at most one storage class specifier.

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

8.1 Storage class specifiers
The sc-specifiers are:

sc-specifier:
/auto
static
extern
register

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In the extern case there must be an external definition (see below)
for the given identifiers somewhere outside the function in which they are declared.

There are some severe restrictions on register identifiers: there can be at most 3 register identifiers
in any function, and the type of a register identifier can only be int, char, or pointer (not fioat, double,
structure, function, or array). Also the address-of operator & cannot be applied to such identifiers. Ex-
cept for these restrictions (in return for which one is rewarded with faster, smaller code), register
identifiers behave as if they were automatic. In fact implementations of C are free to treat register as
synonymous with auto.

If the sc-specifier is missing from a declaration, it is generally taken to be auto.

C Reference Manual - 10

8.2 Type specifiers
The type-specifiers are
type-specifier:

int
char
float
double
struct { rype-deci-list)
struct identifier { type-decl-list)
struct identifier

The struct specifier is discussed in §8.5. If the type-specifier is missing from a declaration, it is gen-
erally taken to be int.

8.3 Declarators
The declarator-list appearing in a declaration is a comma-separated sequence of declarators.
declarator-list:

declarator
declarator , declarator-list

The specifiers in the declaration indicate the type and storage class of the objects to which the declara-
tors refer. Declarators have the syntax:

declarator:
identifier
* declarator
declarator ()
declarator [constant-expression,,,]
(declarator)

The grouping in this definition is the same as in expressions.

8.4 Meaning of declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declara-
tor appears in an expression, it yields an object of the indicated type and storage class. Each declarator
contains exactly one identifier; it is this identifier that is declared.

If an unadorned identifier appears as a declarator, then it has the type indicated by the specifier
heading the declaration.

If a declarator has the form
*+ D ~

for D a declarator, then the contained identifier has the type “pointer to ...””, where *...” is the type
which the identifier would have had if the declarator had been simply D.

If a declarator has the form
D()

then the contained identifier has the type “function returning ..”, where *“...” is the type which the
identifier would have had if the declarator had been simply D.

A declarator may have the form

Dlconstant-expression]
or
D)

In the first case the constant expression is an expression whose value is determinable at compile time,

C Reference Manual - 11

and whose type is int. in the second the constant 1 is used. (Constant expressions are defined precise-
ly in §15.) Such a declarator makes the contained identifier have type ‘‘array.” If the unadorned de-
clarator D would specify a non-array of type *...”, then the declarator “D[i]” yields a 1-dimensional
array with rank 7 of objects of type “...”. If the unadorned declarator D would specify an

n-dimensional array with rank i Xxi,X...xi, then the declarator “D[i,,]” vyields an
(n+1) -dimensional array with rank i/, XI X Xl Xi,,

An array may be constructed from one of the basic types, from a pointer, from a structure, or from
another array (10 generate a multi-dimensional array).

Finally, parentheses in declarators do not alter the type of the contained identifier except insofar as
they aiter the binding of the components of the declarator.

- Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as
follows: functions may not return arrays, structures or functions, although they may return pointers to
such things; there are no arrays of functions, although there may be arrays of pointers to functions.
Likewise a structure may not contain a function, but it may contain a pointer to a function.

As an example, the declaration
int i, *ip, £(), *fip(), (*pfi) ();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip return-
ing a pointer to an integer, and a pointer pfi to a function which returns an integer. Also

float fa[17], »afpl17];
declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3][5](7];

declares a static three-dimensional array of integers, with rank 3x5x7. In complete detail, x3d is an ar-
ray of three items: each item is an array of five arrays; each of the latter arrays is an array of seven in-
tegers. Any of the expressions “x3d”, “x3d[i]”, “x3d[1][J]” “x3d[i}[j}1[k]” may reasonably appear
in an expression. The first three have type ‘‘array™, the last has type int.

n+l

8.5 Structure declarations
Recall that one of the forms for a structure specifier is

struct { type-deci-list }
The rype-decl-list is a sequence of type declarations for the members of the structure:

type-dec!-list:
type-declaration
type-declaration type-decl-list

A type declaration is just a declaration which does not mention a storage class (the storage class
“member of structure” here being understood by context).

type-declaration:
type-specifier declarator-list ;

Within the structure, the objects declared have addresses which increase as their declarations are read
left-to-right. Each component of a structure begins on an addressing boundary appropriate to its type.
On the pDP-11 the only requirement is that non-characters begin on a word boundary; therefore, there
may be 1-byte, unnamed holes in a structure, and all structures have an even length in bytes.

Another form of structure specifier is
struct identifier { type-deci-list }

This form is the same as the one just discussed, except that the identifier is remembered as the struc-
ture rag of the structure specified by the list. A subsequent declaration may then be given using the
structure tag but without the list, as in the third form of structure specifier:

C Reference Manual - 12

struct identifier

Structure tags allow definition of self-referential structures; they also permit the long part of the gle-
claration to be given once and used several times. It is however absurd to declare a structure which
contains an instance of itself, as distinct from a pointer to an instance of itself.

A simple example of a structure declaration, taken from §16.2 where its use is illustrated more fully,
is
struct tnode {
char tword(20];
int count;

struct tnode *left;
struct tnode *right;

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this
declaration has been given, the following declaration makes sense:

struct tnode s, *sp;

which declares s to be a structure of the given sort and sp to be a pointer to a structure of the given
sort.

The names of structure members and structure tags may be the same as ordinary variables, since a
distinction can be made by context. However, names of tags and members must be distinct. The
same member name can appear in different structures only if the two members are of the same type
and if their origin with respect to their structure is the same; thus separate structures can share a com-
mon initial segment.

9. Statements
Except as indicated, statements are executed in sequence.

9.1 Expression statement
Most statements are expression statements, which have the form
expression ,

Usually expression statements are assignments or function calls.

9.2 Compound statement
So that several statements can be used where one is expected, the compound statement is provided:

compound-statement:
{ statement-list)

statement-list:
statement
statement statement-list

9.3 Conditional statement
The two forms of the conditional statement are

It (expression) statement
if (expression) statement else statement

In both cases the expression is evaluated and if it is non-zero, the first substatement is executed. Ip
the second case the second substatement is executed if the expression is 0. As usual the ‘“‘else” ambi-
guity is resolved by connecting an else with the last encountered elseless If.

C Reference Manual - 13

9.4 While statement
The while statement has the form

while (expression) statement

The substatement is executed repeatedly so long as the value of the expression remains non-zero. The
test takes place before each execution of the statement.

9.5 Do statement
The do statement has the form

do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes zero. The test
takes place after each execution of the statement.

9.6 For statement
The for statement has the form

for (expression-1,), ; expression-2,, ; expression-3,,) statement
‘This statement is equivalent to

expression-1;

while (expression-2) (
statement
expression-3;

)

Thus the first expression specifies initialization for the loop; the second specifies a test, made before
each iteration, such that the loop is exited when the expression becomes 0; the third expression typi-
cally specifies an incrementation which is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while
clause equivalent to “while(1)”; other missing expressions are simply dropped from the expansion
above.

9.7 Switch statement

The switch statement causes control to be transferred to one of several statements depending on the
value of an expression. It has the form

switch (expression) statement

The expression must be int or char. The statement is typically compound. Each statement within the
statement may be labelled with case prefixes as follows:

case constant-expression :

where the constant expression must be int or char. No two of the case constants in a switch may have
the same value. Constant expressions are precisely defined in §15.

There may also be at most one statement prefix of the form
default :

When the switch statement is executed, its expression is evaluated and compared with each case con-
stant in an undefined order. If one of the case constants is equal to the value of the expression, con-
trol is passed to the statement following the matched case prefix. If no case constant matches the ex-
pression, and if there is a default prefix, control passes to the prefixed statement. In the absence of a
default prefix none of the statements in the switch is executed.

Case or default prefixes in themselves do not alter the flow of control.

C Reference Manual - 14

9.8 Break statement
The statement

break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the
statement following the terminated statement.

9.9 Continue statement
The statement

continue ;

causes control to pass to the lcop-continuation portion of the smallest enclosing while, do, or for state-
ment; that is to the end of the lcop. More precisely, in each of the statements

while (...) { do { for (...){
céﬁ'tin: ; céﬁiin: ; céﬁiinz :
} while (...);

a continue is equivalent to ‘“‘goto contin”.

9.10 Return statement
A function returns to its caller by means of the return statement, which has one of the forms

retumn ;
return (expression) ;

In the first case no value is returned. In the second case, the value of the expression is returned to the
caller of the function. If required, the expression is converted, as if by assignment, to the type of the
function in which it appears. Flowing off the end of a function is equivalent to a return with no re-
turned value.

9.11 Goto statement
Control may be transferred unconditionally by means of the statement
goto expression ;

The expression should be a label (§§9.12, 14.4) or an expression of type “pointer to int” which evalu-
ates to a label. It is illegal to transfer to a label not located in the current function unless some extra-
language provision has been made to adjust the stack correctly.

9.12 Labelled statement
Any statement may be preceded by label prefixes of the form
identifier .

which serve to declare the identifier as a label. More details on the semantics of labels are given in
§14.4 below.

9.13 Null statement
The null statement has the form

A null statement is useful to carry a label just before the “}” of a compound statement or to supply a
null body to a looping statement such as while.

C Reference Manual - 15

10. External definitions

A C program consists of a sequence of external definitions. External definitions may be given for
functions, for simple variables, and for arrays. They are used both to declare and to reserve storage for
objects. An external definition declares an identifier to have storage class extern and a specified type.
The type-specifier (§8.2) may be empty, in which case the type is taken to be int.

10.1 External function definitions
Function definitions have the form

Sunction-definition:
lype-spec:ﬁer”, Sunction-declarator function-body

A function declarator is similar to a declarator for a “function returning ..” except that it lists the for-
mal parameters of the function being defined.

JSunction-declarator:
declarator (parameter-list,),)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

Sunction-body:
type-deci-list function-statement

The purpose of the type-decl-list is to give the types of the formal parameters. No other identifiers
should be declared in this list, and formal parameters should be declared only here.

The function-statement is just a compound statement which may have declarations at the start.

Sunction-statement:
{ declaration-list,,, statement-list)

A simple example of a complete function definition is

int max(a, b, ¢)
inta, b, c;

intm;
m= (a>b)?a:b;
return{m>c¢c?m:c);

Here “int™ is the type-specifier; “max(a, b, ¢)” is the function-declarator; “int a, b, ¢;” is the type-
decl-list for the formal parameters; “{ ...) is the function-statement.

C converts all float actual parameters to double, so formal parameters declared float have their de-
claration adjusted to read double. Also, since a reference to an array in any context (in particular as an
actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal
parameters declared “array of ..” are adjusted to read “pointer to ..”. Finally, because neither struc-
tures nor functions can be passed to a function, it is useless to declare a formal parameter to be a
structure or function (pointers to structures or functions are of course permitted).

A free return statement is supplied at the end of each function definition, so running off the end
causes control, but no value, to be returned to the caller.

10.2 External data definitions
An external data definition has the form

C Reference Manual - 16

data-definition:
extern_, type-specifier,,, init-declarator-list,,, ;

The optional extern specifier is discussed in § 11.2. If given, the init-declarator-list is a comma-
separated list of declarators each of which may be followed by an initializer for the declarator.

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator inilializer”,

Each initializer represents the initial value for the corresponding object being defined (and declared).

initializer:
constant
{ constant-expression-list)

constant-expression-list:
constant-expression
constant-expression , constant-expression-list

Thus an initializer consists of a constant-valued expression, or comma-separated list of expressions, in-
side braces. The braces may be dropped when the expression is just a plain constant. The exact
meaning of a constant expression is discussed in §15. The expression list is used to initialize arrays;
see below.

The type of the identifier being defined should be compatible with the type of the initializer: a dou-
ble constant may initialize a float or double identifier; a non-floating-point expression may initialize an
int, char, or pointer.

An initializer for an array may contain a comma-separated list of compile-time expressions. The
length of the array is taken to be the maximum of the number of expressions in the list and the
square-bracketed constant in the array’s declarator. This constant may be missing, in which case 1 is
used. The expressions initialize successive members of the array starting at the origin (subscript 0) of
the array. The acceptable expressions for an array of type “‘array of ..” are the same as those for type
... As a special case, a single string may be given as the initializer for an array of chars; in this case,
the characters in the string are taken as the initializing values.

Structures can be initialized, but this operation is incompletely implemented and machine-
dependent. Basically the structure is regarded as a sequence of words and the initializers are placed
into those words. Structure initialization, using a comma-separated list in braces, is safe if all the
members of the structure are integers or pointers but is otherwise ill-advised.

The initial value of any externally-defined object not explicitly initialized is guaranteed to be 0.

11. Scope rules

A complete C program need not all be compiled at the same time: the source text of the program
may be kept in several files, and precompiled routines may be loaded from libraries. Communication
among the functions of a program may be carried out both through explicit calls and through manipu-
lation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the /exical scope of an
identifier, which is essentially the region of a program during which it may be used without drawing
“undefined identifier” diagnostics; and second, the scope associated with external identifiers, which is
characterized by the rule that references to the same external identifier are references to the same ob-
ject.

C Reference Manual - 17

11.1 Lexical scope

C is not a block-structured language; this may fairly be considered a defect. The lexical scope of
names declared in external definitions extends from their definition through the end of the file in
which they appear. The lexical scope of names declared at the head of functions (either as formal
p:ra;nele;s or in the declarations heading the statements constituting the function itself) is the body of
the function.

. Itis an error to redeclare identifiers already declared in the current context, unless the new declara-
tion specifies the same type and storage class as already possessed by the identifiers.

11.2 Scope of externals

If a function declares an identifier 10 be extern, then somewhere among the files or libraries consti-
tuting the complete program there must be an external definition for the identifier. All functions in a
given program which refer to the same external identifier refer to the same object, so care must be tak-
en that the type and extent specified in the definition are compatible with those specified by each
function which references the data.

In PDP-11 C, it is explicitly permitted for (compatible) external definitions of the same identifier to
be present in several of the separately-compiled pieces of a complete program, or even twice within the
same program file, with the important limitation that the identifier may be initialized in at most one of
the definitions. In other operating systems, however, the compiler must know in just which file the
storage for the identifier is allocated, and in which file the identifier is merely being referred to. In the
implementations of C for such systems, the appearance of the extern keyword before an external
definition indicates that storage for the identifiers being declared will be allocated in another file. Thus
in a multi-file program, an external data definition without the extern specifier must appear in exactly
one of the files. Any other files which wish to give an external definition for the identifier must in-
clude the extemn in the definition. The identifier can be initialized only in the file where storage is al-
located.

In pDP-11 C none of this nonsense is necessary and the extern specifier is ignored in external
definitions.

12. Compiler control lines
~ When a line of a C program begins with the character #, it is interpreted not by the compiler itself,
but by a preprocessor which is capable of replacing instances of given identifiers with arbitrary token- -
strings and of inserting named files into the source program. In order to cause this preprocessor to be
invoked, it is necessary that the very first line of the program begin with #. Since null lines are ig-
nored by the preprocessor, this line need contain no other information.

12.1 Token replacement
A compiler-control line of the form

define identifier token-string

(note: no trailing semicolon) causes the preprocessor to replace subsequent instances of the identifier
with the given string of tokens (except within compiler control lines). The replacement token-string
has comments removed from it, and it is surrounded with blanks. No rescanning of the replacement
string is attempted. This facility is most valuable for definition of ‘““manifest constants”, as in

define tabsize 100
int table[tabsize];

12.2 File inclusion

Large C programs often contain many external data definitions. Since the lexical scope of external
definitions extends to the end of the program file, it is good practice to put all the external definitions
for data at the start of the program file, so that the functions defined within the file need not repeat
tedious and error-prone declarations for each external identifier they use. It is also useful to put a
heavily used structure definition at the start and use its structure tag to declare the auto pointers to the

C Reference Manual - 18

structure used within functions. To further explioit this technique when a large C program consists of
several files, a compiler control line of the form

include " filename"

results in the replacement of that line by the entire contents of the file filename.

13. Implicit declarations

It is not always necessary to specify both the storage class and the type of identifiers in a declaration.
Sometimes the storage class is supplied by the context: in external definitions, and in declarations of
formal parameters and structure members. In a declaration inside a function, if a storage class but no
type is: given, the identifier is assumed to be int; if a type but no storage class is indicated, the
identifier is assumed to be auto. An exception to the latter rule is made for functions, since auto func-
tions are meaningless (C being incapable of compiling code into the stack). If the type of an identifier
is “function returning ...”, it is implicitly declared to be extern.

In an expression, an identifier followed by (and not currently declared is contextually declared to be
“function returning Iint”.

Undefined identifiers not followed by (are assumed to be labels which will be defined later in the
function. (Since a label is not an lvalue, this accounts for the “Lvalue required” error message some-
times noticed when an undeclared identifier is used.) Naturally, appearance of an identifier as a label
declares it as such.

For some purposes it is best to consider formal parameters as belonging to their own storage class.
In practice, C treats parameters as if they were automatic (except that, as mentioned above, formal
parameter arrays and floats are treated specially).

14. Types revisited
This section summarizes the operations which can be performed on objects of certain types.

14.1 Structures

There are only two things that can be done with a structure: pick out one of its members (by means
of the . or —> operators); or take its address (by unary &). Other operations, such as assigning from
or to it or passing it as a parameter, draw an error message. In the future, it is expected that these
operations, but not necessarily others, will be allowed.

14.2 Functions

There are only two thmgs that can be done with a function: call it, or take its address. If the name
of a function appears in an expression not in the function-name position of a call, a pointer to the
function is generated. Thus, to pass one function to another, one might say

int f();

5(f):
Then the definition of g might read
g (funcp)

i{nt (+funcp) ();
(~funcp) ();
| e

Notice that f was declared explicitly in the calling routine since its first appearance was not followed by
(.

C Reference Manual - 19

14.3 Arrays, pointers, and subscripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to the
first member of the array. Because of this conversion, arrays are not lvalues. By definition, the sub-
script operator [] is interpreted in such a way that “E1{E2]” is identical to “+((E1) + (E2))”. Because
of the conversion rules which apply to +, if El is an array and E2 an integer, then E1[E2] refers to
the E2-th member of E1. Therefore, despite its asymmetric appearance, subscripting is a commutative
operation.

A consistent rule is followed in the case of multi-dimensional arrays. If E is an n-dimensional array
of rank ixjx...xk, then E appearing in an expression is converted to a pointer to an
(n—1)-dimensional array with rank jX...xk. If the * operator, either explicitly or implicitly as a result
of subscripting, is applied to this pointer, the result is the pointed-to (n—1)-dimensional array, which it-
self is immediately converted into a pointer.

For example, consider
int x[3](5);

Here x is a 3x5 array of integers. When x appears in an expression, it is converted to a pointer to (the
first of three) S-membered arrays of integers. In the expression “x[i]”, which is equivalent to
“s(x+i)", x is first converted to a pointer as described; then i is converted to the type of x, which in-
volves multiplying / by the length the object to which the pointer points, namely S integer objects.
The results are added and indirection applied to yield an array (of 5 integers) which in turn is convert-
ed to a pointer to the first of the integers. If there is another subscript the same argument applies
again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the
first subscript in the declaration helps determine the amount of storage consumed by an array but
plays no other part in subscript calculations.

144 Labels

Labels do not have a type of their own; they are treated as having type “array of int”. Label vari-
ables should be declared “pointer to int”; before execution of a goto referring to the variable, a label
(or an expression deriving from a label) should be assigned to the variable. .

Label variables are a bad idea in general; the switch statement makes them almost always unneces-
sary.

15. Constant expressions

In several places C requires expressions which evaluate to a constant: after case, as array bounds,
and in initializers. In the first two cases, the expression can involve only integer constants, character
constants, and sizeof expressions, possibly connected by the binary operators

+ =+ / % &1 " << >>

or by the unary operators

Parentheses can be used for grouping, but not for function calls.

A bit more latitude is permitted for initializers; besides constant expressions as discussed above, one
can also apply the unary & operator to external scalars, and to external arrays subscripted with a con-
stant expression. The unary & can also be applied implicitly by appearance of unsubscripted external
arrays. The rule here is that initializers must evaluate either to a constant or to the address of an
external identifier plus or minus a constant.

C Reference Manual - 20

16. Examples.

These examples are intended to illustrate some typical C constructions as well as a serviceable style
of writing C programs.

16.1 Inner product
This function returns the inner product of its array arguments.

double Inner(v1, v2, n)
?ouble vil), v2(]:

double sum;
intl;
sum = 0.0;
for (i=0;i<n; i++)
sum =+ vi[i]* v2[il;
return(sum);

)

The following version is somewhat more efficient, but perhaps a little less clear. It uses the facts that
parameter arrays are really pointers, and that all parameters are passed by value.

double inner(v1, v2, n)
double *v1, *v2;

doubie sum;
sum = 0.0;
while(n—-)
SUM =+ *y 14+ » *y244;
return (sum);

}

The declarations for the parameters are really exactly the same as in the last example. In the first case
array declarations “ [] were given to emphasize that the parameters would be referred to as arrays; in
the second, pointer declarations were given because the indirection operator and ++ were used.

16.2 Tree and character processing

Here is a complete C program (courtesy of R. Haight) which reads a document and produces an al-
phabetized list of words found therein together with the number of occurrences of each word. The
method keeps a binary tree of words such that the left descendant tree for each word has all the words
lexicographically smaller than the given word, and the right descendant has all the larger words. Both
the insertion and the printing routine are recursive:

The program cails the library routines gerchar to pick up characters and exit to terminate execution.

Ié’r§inrf is)> called to print the results according to a format string. A version of printf is given below
16.3).

Because all the external definitions for data are given at the top, no extemn declarations are necessary
within the functions. To stay within the rules, a type declaration is given for each non-integer func-
tion when the function is used before it is defined. However, since all such functions return pointers
which are simply assigned to other pointers, no actual harm would result from leaving out the declara-
tions; the supposedly int function values would be assigned without error or complaint.

define nwords 100 /* number of different words ¢/
define wsize 20 /* max chars per word */
struct tnode { /* the basic structure */

char tword[wsize];

int count;

struct tnode =*left;
struct tnode *right ;

C Reference Manual - 21

struct tnode space[nwords]; /* the words themselves */

int nnodes nwords; /* number of remaining slots */
struct tnode *spacep space; /* next available slot */

struct tnode =freep; /+ tree list */

/*

* The main routine reads words untii end-of-file ("\O" returned from getchar")
» "tree" is called to sort each word into the tree.

s/
main{)
struct tnode *top, *tree();
char ¢, word[wsizel;
inti;
i=top =0;
while (c=getchar())
if (a’<=c&&c<="721l'A'<=c&&c<=Z) {
it (i<wsize—1)
word[i++] = c:
} else
if (i) {
word[i++] = \0";
top = tree(top, word);
i=0;
tprint(top);
/e

« The central routine. If the subtree pointer is null, allocate a new node for it.
-« If the new word and the node’s word are the same, increase the node’s count.
= Otherwise, recursively sort the word into the left or right subtree according
» as the argument word is less or greater than the node’s word.

=/

struct tnode *tree(p, word)

struct tnode *p;

char word|[1;

struct tnode «alioc();
int cond;

/+ Is pointer null? =/
if (p==0) {
p = alloc();
copy (word, p—>tword);
p—>count = 1;
p—>right = p—>left = O;
\ retumn(p);
/* |s word repeated? =/
if ((cond=compar(p—>tword, word)) == 0) {
p—>count++;
retum(p);

/+ Sort into left or right */
if (cond<0)

p—>left = tree(p—>left, word);
else

p—>right = tree(p— >right, word);

C Reference Manual - 22

return(p);

/e

* Print the tree by printing the left subtree, the given node, and the right subtree.
./

tprint(p)

struct tnode *p;

while (p) {
tprint (p—>left);
printf("%d: %s\n", p—>count, p—>tword);
p = p—>right;

)

/e

» String comparison: return number (>, =, <) 0
* according as 81 (>, =, <) s2.

s/

compar(s1, s2)

char *s1, »s2;

int ¢1, ¢2;

while{ (€1 = *s1++) == (c2 = *»§2++))
it (¢1=="\0")
retum(0);
return(c2—c1);

/*

= String copy: copy s1 into s2 until the null
= character appears.

./

copy(s1, s2)

char *s1, »s2;

while(*82++ = *g1++);

/*

* Node allocation: return pointer to a free node.

= Bomb out when all are gone. Just for fun, there
* i3 a mechanism for using nodes that have been
« freed, even though no one here calls "free."

»/

struct tnode #alloc()

struct tnode st;

if (freep) |{
t = freep;
freep = freep— >left;
return(t);

if (——nnodes < 0) {
printf ("Out of space\n");
exit();

return (spacep++);

C Reference Manual - é3

* The uncalled routine which puts a node on the free list.
./

free(p)

struct tnode *p;

p—>left = freep;
freep = p;

To illustrate a slightly different technique of handling the same problem, we will repeat fragments of
this example with the tree nodes treated explicitly as members of an array. The fundamental change is
to deal with the subscript of the array member under discussion, instead of a pointer to it. The struct
declaration becomes

struct tnode {
char tword [wsize];
int count;
int left;
int right;
and alloc becomes
alloc ()

intt;

t = —nnodes;

if (t<=0) { '
printf(*"Out of space\n");
exit();

return(t);

}

The free stuff has disappeared because if we deal with exclusively with subscripts some sort of map has
to be kept, which is too much trouble.

Now the rtree routine returns a subscript also, and it becomes:

tree (p, word)
char word[];

int cond;

if (p==0) {
p = alloc();
copy (word, space[p] .tword);
space[p).count = 1;
space[p].right = space[p].left = O;
retumn(p);

if ((cond=compar(space[p].tword, word)) == 0) |{
space[p].count++;
retum(p);

if (cond<0)

space[p].left = tree(spacelp].left, word);
else

space([p].right = tree(space(p].right, word);
return(p); .

C Reference Manual - 24

The other routines are changed similarly. It must be pointed out that this version is noticeaply less
efficient than the first because of the multiplications which must be done to compute an offset in space
corresponding to the subscripts.

The observation that subscripts (like “ali]™) are less efficient than pointer indirection (like
“»ap”) holds true independently of whether or not structures are involved. There are of course many
situations where subscripts are indispensabie, and others where the loss in efficiency is worth a gain in
clarity.

16.3 Formatted output

Here is a simplified version of the printf routine, which is available in the C library. It accepts a
string (character array) as first argument, and prints subsequent arguments according to specifications
contained in this format string. Most characters in the string are simply copied to the output; two-
character sequences beginning with “%” specify that the next argument should be printed in a style as
follows:

%d decimal number
%o octal number

%c ASCII character, or 2 characters if upper character is not null
%s string (null-terminated array of characters)
%f floating-point number

The actual parameters for each function call are laid out contiguously in increasing storage locations;
therefore, a function with a variable number of arguments may take the address of (say) its first argu-

ment, and access the remaining arguments by use of subscripting (regarding the arguments as an ar-
ray) or by indirection combined with pointer incrementation.

If in such a situation the arguments have mixed types, or if in general one wishes to insist that an
lvalue should be treated as having a given type, then struct declarations like those illustrated below
will be useful. It should be evident, though, that such techniques are implementation dependent.

Printf depends as well on the fact that char and float arguments are widened respectively to int and
double, so there are effectively only two sizes of arguments to deal with. Printf calls the llbrary
routines putchar to write out single characters and froa to dispose of floating-point numbers.

printf (fmt, args)
t{:har fmt(];

char »s;
struct { char *scharpp: };
struct { double *doublep; };

int »ap, x, c;
ap = &args; /* argument pointer »/
for (; ;) {
while((¢ = *fmt++) 1= "%") {
if(c =="\0")
return;
putchar(c);
switch (¢ = sfmt++) {
/* decimal */
case 'd”:
X = *gp++;
If(x < 0) {
X = =X;
it(x<0) { /* is — infinity »/
printf(" —32768");

continue ;

putchar("=");

printd(x);
continue;

/* octal =/

case ‘0"
printo (sap++);
continue ;

/* float, double */

case ‘f":
/= let ftoa do the real work */
ftoa (=ap.doublep++);
continue;

/* character */

case C"
putchar(*ap++);
continue;

/+ string */

case’s”:
s = sap.charpp++;
while(c = *s++)

putchar(c);

continue;

putchar(c);

}
/=
 Print n in decimal ; n must be non-negative
./
printd(n)

inta;

it (a=n/10)

printd(a);
putchar(n%10 + '0");

/e

* Print n in octal, with exactly 1 leading O
*/

printo(n)

if (n)
printo((n>>3)&017777);
putchar((n&07)+°0");

C Reference Manual - 25

C Reference Manual - 26

REFERENCES
1. Johnson, S. C., and Kernighan, B. W. “The Programming Language B.” Comp. Sci. Tech. Rep.
#8., Bell Laboratories, 1972.
Ritchie, D. M., and Thompson, K. L. *“The UNix Time-sharing System.” To appear in C. ACM.
Thompson, K. L., and Ritchie, D. M. UNIx Programmer’s Manual. Bell Laboratories, 1973.

4, Lesk, M. E., and Barres, B. A. “The Gcos C Library.” Unpublished internal memorandum, Bell
Laboratories, 1974.

APPENDIX 1

Syntax Summary

1. Expressions.

expression:
primary
* expression
& expression
— expression
| expression
~ expression
++ Ivalue
—=— lvalue
lvalue ++
Ivalue ——
sizeof expression

expression binop expression

expression 7 expression

: expression

Ivalue asgnop expression

expression , expression

primary:
identifier
constant
string
(expression)

primary (expression-list_,)

primary | expression]
Ivalue . identifier
primary — > identifier

Ivalue:
identifier
primary | expression]
Ivalue . identifier
primary — > identifier
* expression
(tvalue)

The primary-expression operators
ofn.—>

have highest priority and group left-to-right. The unary operators

& — | ~ +4+ —— sizeof

C Reference Manual - 27

have priority below the primary operators but higher than any binary operator, and group right-
to-left. Binary operators and the conditional operator all group left-to-right, and have priority

decreasing as indicated:

binop:
s /%
+ -
>> <L

C Reference Manual - 28

o™ o

&
I
?:

Assignment operators all have the same priority, and all group right-to-left.

asgnop.

The comma operator has the lowest priority, and groups left-to-right.
2. Declarations.

declaration:
decl-specifiers declarator-listw, ;

decl-specifiers:
type-specifier
sc-specifier
type-specifier sc-specifier
sc-specifier type-specifier

sc-specifier:
auto
static
extern
register

type-specifier:
int
char
float
double
struct { type-deci-list }
struct identifier { type-deci-list }
struct identifier

declarator-list:
declarator
declarator , declarator-list

declarator:
identifier
» declarator
declarator ()
declarator (constant-expression,,,)
(declarator)

type-decl-list:
type-declaration
type-deciaration type-deci-list

type-declaration:
type-specifier declarator-list
3. Statements.

statement:
expression ,

C Reference Manual - 29

{ statement-ist)

if (expression) statement

if (expression) statement e\se statement
while (expression) statement

tor (expression,, ; expression,, ; expression_,) statement
switch (expression) statement

case constant-expression : statement
detault : statement

break ;

continue ;

retum ;

retum (expression) ;

goto expression ;

identifier : statement

Statement-list:
Statement
statement statement-list

4. External definitions.

program:
external-definition
external-definition program

external-definition:
Sunction-definition
data-definition

Sunction-definition:
type-speciﬁerw JSunction-declarator function-body

JSunction-declarator:
declarator (parameter-list_,,)

parameter-list:
identifier
identifier , parameter-list

JSunction-body:
type-decl-list function-statement

JSunction-statement:
{ declaration-list_, statement-list }

data-definition:
extem_, type-specifier,,, init-declarator-listw, ;

init-declarator-list:
init-declarator
init-declarator , init-declarator-list

init-declarator:
declarator initializer”‘

C Reference Manual - 30

initializer:
constant
{ constant-expression-list }

constant-expression-list:’
constant-expression
constant-expression , constant-expression-list

constant-expression:
expression

5. Preprocessor
define identifier token-string
Include "filename"

