A Manual for the Tmg Compiler-writing Language
| M. D. Mcllroy

Bell Laboratories
Murray Hill, New Jersey

ABSTIRACT

Tmg is a string processing language especially intended
for writing translators for computer languages. It
deals with string scanning, building of tables and out-
put generation, and provides some integer arithmetic.
The experience of many years has been distilled into a
new version running on the PDP-11 under the UNIX

operating system.

A Manual for the Tmg Compiler-writing Language
M. D. McIlroy
Bell Laboratories

Murray Hill, New Jersey
September 13, 1972

1. INTRODUCTION

1.1 Parsing rules and functions

At the heart ot the language are parsing rules (3.1). A rule is
a sequence of actions, written simply by naming the actions one
after the other. For example, this typical parsing rule

smark any(letter) string(alpha) install

might be used to recognize an identifier of arbitrary length and
install it in a table. The example invokes two scanning func-
tions, "any(.)" and "string(.)", which recognize respectively
precisely one, and an arkitrary string of characters from a
character class. Sandwiched around the scanning are "smark" and
*install®, which note the keginning of the string, and enter the
completed string into the table.

A parsing statement (2.) is a parsing rule labeled with a name
and ended with a semicolon. This parsing statement contains the
previous parsing rule:

ident: smark any (letter) string(alpha) install;

When the meaning is obvious from context, a parsing statemént may
also be called simply a rule.

As it happens, ®“smark", "any(.)" and ®"string(.)" are all func-
tions intrinsic to Tmg, which we call builtins, while "install"
must Le defined by another rule in terms of other actions. No
character classes are built in, so “letter® and "alpha" also must
be defined somewhere else in the program.

The function of matching a specifed literal string is so common
that it has been given a special notation, the string surrounded
by angle brackets, <>. Thus a Fortran DO statement might be
recognized by

do: <DO> number ident <=> liﬁits;

-2-

1.2 Success, f£ailure apd tranches

Execution of a parsing rule may have several effects. (We have
already noted that it may make entries in a table.) Every rule
must succeed or fail. A rule succeeds when execution proceeds to
the end of the rule without failing. Certain builtins can fail--
"any (letter)® fails unless the cursor (see below) points to a
letter. 1In general the failure of any action invoked by a rule
causes the rule itself to fail without doing any subsequent ac-
tions. However, there are ways tc continue conditionally upon
failure.

A rule may specify an alternate kranch in case of failure, as in
this rule for a DO limit, which consists either of an identifier
or of a number.

liﬁit: ident/1m1;
1lm1: number;

The branch, designated by a slash and the name of a rule, is a
conditional go-to. If "ident" fails , then the rule for "limit"
continues at “1lmi1* as if "ident" had never been invoked (but see
3.7 for a qualification). The success or failure of “number"®
then determines the success or failure of *limit®,

Cconditional branches may also be made on success, indicated by a
backslash.

limits: limit <,> limit <,>\lms1i;
lms1: limit;

This rule continues at “lmsi® after a second comma has been
found. Because a test has keen made, execution of ®"limits® con-
tinues right on when a second comma is not found, to terminate
(successfully) at the semicclon.

1.3 The input cursor

A successful action may move a c¢urgsor along the input--
"any(letter) ¥ succeeds and moves the cursor to the next character
if it points ¢to a letter. When a rule succeeds the cursor is
left where it was left by the last action in the rule. When a
rule fails, the cursor is restored to the place where it was when
the rule was invoked, regardless of what happened later.

1.4 Translation gules

A 3successful parsing rule may delivexr a trxanglation rzule, often
called simply a granglation. Since the proper order of output
may not be the same as the order in which translation rules are
delivered, the execution of a translation rule is delayed until
explicitly called for (1.5). :

- 3 -

A translation rule, like a parsing rule, consists of a sequence
of actions, which may be other translation rules or 1literal
strings to place into the cutput. A translation rule is always
enclosed in braces, (}.

This simple program defines the tramnslation of fully paren-
thesized infix expressions to polish postfix for a stack machine.

expr: <(>/expl expr orerator expr <)> = { 3 1 2 };
expl: ident = { < IOAC > 1 };
operator:

op0: <+>/0pt = { < ALD> };
opl: <=>/0p2 = { < SUB> };
op2: <*>/0p3 = (< MPY> };
op3: </> = { < DIV };

The "=% in each rule intrcduces the translation to be delivered
by the rule. The numkers in a translation refer to translations
delivered by those actions that delivered translationg to the
parsing rule. Those translations are identified by counting
backward from the = sign. Actions with no translations (e.qg.
recognizing a literal) are not counted. This awkward convention
happens to be very efficient to implement, so we 1live with it;
however some syntactic sugaring will get around counting in many
cases (4.2).

The four operators +-*/ are translated into "ADD", “SUB", %“MPY"
and "DIV", An expression consisting of a single identifier is
rendered as “LOAD" followed Lty the translation of the identifier,
which we assume is unchanged in translation. A little inspection
shows that the parsing rules correspond to this simple BNF, in
which angle brackets have the same meaning as in Tmg:

expr ::= < (> expr operator expr <)> | ident
operator ::= <+> | <=> | <¥> | />

and that the expression ((a*x)+(b*y)) translates into
LOAD a LOAD x MPY LOAD b LOAD y MPY ADD

Hdere we see an important difference between the Tmg, which is a
rogram, and the BNF, which is a pattexn. In Tmg the branch was
placed after < (>, not after the matching <)> as was the alternate
in the BNF. The latter place would be wrong, for the rule would
fail without ever getting there to test for the branch.

1.5 Getting output

Mere delivery of a translation rule does not create any output.
Indeed a delivered translaticn may never get used, for example if
the rule to which it was delivered fails. The builtin function
w“parse(.)" is provided tc cause the execution c¢f a parsing rule
followed immediately by the execution of its translation (if the
rule succeeds). Data is placed on the output file only while

-u-

translations are being executed. Once executed, the translation
is forgotten.

These two rules might be used to parse and translate Fortran
card-by-card.

program: comment\program
endcard\done
parse (statement) \program
diag (error) \program;
done: ;

First each card is checked tc see if it is a comment, and if so
the rule 1loops. (It is understood that "comment®" delivers no
translation lest the process get clogged witn delivered but unex-
ecuted translations.) Next the card is checked to see whether it
is the end; if it is, the rule terminates by going to the empty
rule "done™. When “statement® succeeds, its translation is
output; “parse(statement)" then succeeds in turn, and the rule
loops. When ©“statement® fails, so does "parse(statement)®" and
the rule goes on to “diag (error)".

"Diag(.) " is just like “parse(.)", except that it sends output to
the diagnostic file. We assume that “error" has been coded to
eat up any card and perhars deliver a copy of the card along with
a message. Thus unless there is no card there at all (end of
file), the rule loops after giving the diagnostic.

1.§ Tables

As characters are scanned over by “any(.)" and "string(.)%, but
not by quoted literals, they are gathered into a curxent gg;;gg.
The current string may ke looked up in or entered into a table.
Recalling the rule on page 1 for identifiers. we now show how to
accomplish “install®.

ident: smark any (letter) string(alpha) install = (1 };
install: enter(t,i) getnam(t,i) = (1 };

The current string is cleared by "smark" and gathered by “any(.)"
and “string(.)". MEnter(t,i)" enters the current string into
table t and assigns the index of the entry to variable i. (See
Section 6 for how to create a table.) "Getnam(t,i)" delivers the
string which is the ith entry of table t. The ®*= { 1 }" in each
rule arranges to deliver to its invoker the one translation that
was delivered to it.

1.7 character clasgses

A character class is defined by enclosing a set of characters in
double angle brackets. Sets may be unioned by juxtaposition as
in the next example.

-5 -

letter: <<abcdefghi jklmmopgrstuvwxyz>>
<<ABCDEFGHIJKLMNOPQRSTUVHXYZ>> ;

An exclamation mark conplements a set as in this example that
defines the class of all ascii characters as the complement of
the empty class.

ascii: 1<<O>;
2. PROGRAMS

A Tmg program consists of a sequence of statements. Each state-
ment has one of these forms

(1) a comment bracketed by /* */ in the style of PL/I

(ii) a parsing statement

(iii) a labeled translation rule (4.)

(iv) a labeled character class (3.2)

{(v) a labeled list of octal constants separated by
semicolons (5.1,5.7)

All statements except comments are terminated by semicolons.
Spaces, tabs and newline characters delimit tokens but not state-
ments. Execution of the program begins with the first noncomment
statement, which must be a parsing statement, and ends when exe-
cution of that rule (as extended by go-to’sj ends.

A parsing statement is a lakeled parsing rule foilowed by a semi-
colon or by a parsing statement. In the latter case the execu-
tion of the containing statement flows into the contained rule as
if the contained label were not there.

Instructions for compiling and executing a program on the PDP-11
are reproduced from the UNIX manual (8] as Section 10 of this
manual.

3. PARSING RULES
3.1 General form

A parsing rule is a possikly empty sequence of disjuncts separat-
ed by | signs.

A disjunct consists of a nonempty sequence of parsing elements
(called simply elements when the context is obvious). An element
may be any one of

(i) a literal (10.2)

(ii) a name of a builtin function (8.) -

(iii) a name of a parsing statement (2.)

(iv) an output element (a translation) (3.3,4.)

-6 =

(v) a reference tc a parameter of the parsing
statement (3.5)

(vi) an arithmetic element (5.1)

(vii) any of the preceding with a success or
failure branch (1.2)

(viii) a parsing rule in parentheses ()

The elements specify actions to be performed in order, except as
modified by failure, branches or disjunction.

3.2 Literals and character classeg

A literal consists of one or more ascii characters enclosed in
angle brackets <>. A > sign may appear within a literal only as
the first character.

A literal consisting of a single newline character may be desig-
nated by a special notation, an unbracketed asterisk *.

A character class is designated by

(i) a set of characters enclosed in double angle
brackets <<>>

(ii) a union of two or more classes of type (i)
indicated by juxtaposition

(iii) +the complement of a class of type (i) or (ii)
indicated by a prefixed ! -

Type (ii) classes are merely a convenience for splitting a large
class up into readable groupings. The characters of a class may
be given in any order, with duplications, except that the charac-
ter >, if included, must come 1last to avoid confusion with
literals.

There is always an ignored class, which is saved upon the invoca-
tion and restored upon the return from each parsing rule. The
ignored class is initially empty; “ignore(.)" resets it. The
function “smark® scans over ignored characters before marking the
start of the current string. "Any(.)" and ®string(.)* skip ig-
nored characters. Ignored characters are skipped before, but
not within, literals.

Here we define the syntax of a Tmg literal, which must contain at
least one ascii character. #Ignore (none) * resets the ignored
class from the prevailing value, which is space, tab and newline.

literal: smark <<> ignore (none) any(ascii) string (nonket) <>>;
nonket: (<<>>>; '

none: <>
ascii: - 1<<O>;

The Tmg character set consists of 127 characters--ascii less NUL.

3.3 Output elements

-7-

An output element is an = sign fcllowed by a translation rule, or
by the name of a labeled translation rule. In the latter case
the element acts as if the designated rule were copied verbatim
into the place of the name.

3.4 Disijunctions

An infix | sign separates two or more disjuncts, each of which is
a nonempty segquence c¢f elements. The example of page 3 may be
reworked into a go-to-less form using disjunction:

expr: <(> expr cperator expr <)> = (3 1 2}

| ident = { < LOAD > 1 };
operator: <+> = { < ADD> }

| <=> = { < SUB> }

| <*> = { < MPY> }

{ </> = { < DIV };

Disjuncts are executed in crder, with the second being tried if
and only if the first element of the first disjunct fails and has
no branch, and so on. Once past the first element of a disjunct,
the rule executes as if the other disjuncts weren’t there. For
all its BNF-like appearance, a disjunction still represents a
program, not a pattern, as may be illustrated by the example of

DO limits from page 2.

limits: limit <,> limit
(<> limit | ())

The following version of this rule is incorrect because the
second disjunct is useless--it wculd only be tried when the first
element of the first disjunct failed, rather than when the second
comma failed.

limits: limit <,> limit <,> limit
| limit <,> limit;

3.5 Parameters

A parsing statement may have one or more parameters. Correspond-
ing arguments are designated in ordinary functional notation. An
argument may be

(i) name of a statement

a

(ii) a parenthesized parsing rule

(iii) a character class

(iv) a number

v) a reference to a parameter of the invoking rule

(vi) a literal; corresponding parameter may only be used
a

s an argurent of another element

The forms ii and iii are understood +t0 be shorthand for an
unwritten name of a statement containing the given rule or vari-
able.

A parameter is referred to Lty number, counting 1,2,.¢.¢ from
right to ;efg in the argument list, the number being preceded by
a dollar sign. Before any parameters are used, they must be made
available by means of the builtin "params(.)", whose argument
tells how many arguments are expected. "“Params(.)" may be used
several times to pick off successive arguments from the right end
of the argument list; the arguments so ocbtained are (re)numbered
$1,8250c0 If the total number of arguments transmitted during
execution of a rule is wrong, or if an argument is used in a non-
sensical context, chaocs usually results.

This example defines a number of constructs of Algol in terms of
a "separated 1list" or %seplist(.)". The $2 argument of seplist
defines a list element, the $1 argument defines the separator.

seplist: params(2) 32 ($1 seplist($2, $1) | ())
block: <hegin> serlist (statement, (<;>)) <end>;
actuals: < (> seplist (expr, (<,>)) <)>; .
formals: < (> seplist(ident, (<,>)) <)>;

expr: seplist (texrm, (<+>|<=>)):

terms seplist (factor, (<*>|</>));

factor: seplist (primary, (<1>)):;

Parses according to this definition of "seplist® are right asso-
ciative, and not always appropriate to Algol. The next section
tells how to obtain left-associative parses.

The parameters of a rule that is not properly contained in any
other rule may be denoted by names instead of numbers, provided
they are referred to from within that rule only. The names are
declared by beginning the rule with ®proc(.)", where the argu-
mezts of "“proc" are the rarameters. "Seplist® can be defined
this way: .

seplist: proc(x,y) x (y seplist(x,y) (()):

The following rule defines "not(.)" to be a parsing element that
succeeds only wanen its argument fails and vice versa. The built-
in "f£ail" does what you expect.

not: proc(x) x fail | ()

The next example uses "not(.)" to distinguish a < sign from <(=
and << by 1looking ahead one character. The dcuble parentheses
come from an argument of type (ii), a parsing rule.

lessthan: <<> not ((any (<<=<>>)));

"Not((not(.)))" may be used to peek ahead without displacing
the input cursor as in this rule for recognizing the end of a:
statement in BCPL, where a newline (denoted *) can act as a semi-
colon provided the beginning of the next line is a plausible
beginning for a statement.

-9 -

semicolon: <;> | (% not((not((ident!keyword)))));

Parameters are passed by name, in the Algol sense. This example
capitalizes on a name parameter to recognize .a notorious non-
context free language.

f: proc(x) <a> £((x)) <e> | x;

The element ‘"parse((f(())))" will recognize a™b™e¢". The di=-
agram shows the progress of a parse of "aabbcc™".

|m—————— f((()))mmcccaaa
! v = (<D (<D>()))) =,
R P S Y R ST) Py
! == <®>0)=-y

a a b b c c

3.6 Bundles

Upon successful completion of a rule, all translations that have
been delivered to it are bundled into a single translation, or
bundle, to be delivered to its invoker. The elements of the bun-
dle are translation rules. The elements are counted 0,1,2,...
from the most to the least recently delivered.

Translations delivered by output elements (designated by =) are
no different from translations delivered by other elements. 1In
any case the translation most recently delivered to a rule be-
comes the 0 element in its bundle. Thus the rules

param: ident = { 1 };
param: ident;

deliver indistinguishable translations (see 4.3 for a qualifica-
tion). The latter form is more efficient in time and space.

The builtin "bundle" causes a bundling in the rule that invoked
it up to the point of its invocation, and delivers that bundle to
the same rule. The set of translations delivered up to the invo-
cation of "bundle" is replaced by just one translation--exactly
the translation that the rule would have delivered if the final
semicolon appeared in place of "bundle". "Bundle" is particular-
ly useful for left-associative parses, as in the following frag-
ment of a translation from infix to postfix with operator pre-
cedence. The operators +-%/ are left-associative and T is

right-associative.

-10-

expr: term
expri: addopsdone term s { 3 1 2)} bundle\expri;
term: factor

termi: mulopsdone factor = (3 1 2)} bundle\termi;
factor: primary <t>/done factor = { 2 1 < EXP> };
primary: ident = (< LOALC > 1}

| <(> expr <)>;

done: :

addop: <+> = { < ADD> }
| <=> = (< 8UB> };

mulop: <*> = [< MUL> }
| </> = { < DIV> };

The builtin "reduce(n)" performs the same job as *"bundle" except
that it replaces only the last n delivered translations. There
can be no intra- or interbundle references (4.2, 4.4) between
elements of a bundle created by "reduce(.)" and translations of
earlier elements of the rule.

3.1 side effects
Some side effects of the execution of a rule are automatically
undone upon its completion. All side effects except these
persist:

assignments to variables saved by "push(.)" are undone

the ignored class is reset
the ,cursor is reset on failure

4. TRANSIATION RULES

4.1 General form
The body of a translation rule is a sequence of'

glgmg%;g'enclosed in braces (}. A translation element may be any
one o
(1) a name of a labeled translation rule

(i1) a literal (3.2)

(1ii) a reference to a parameter of the translation
rule (4.3)

(iv) an intrabundle reference optionally accompanied
by arguments (4.2)

(v) an interbundle reference optionally accompanied
by arguments (4.4)

in general the significance of a translation element is dynamic
and depends upon the progress of the parse and upon other trans-
lation rules delivered by the parse. If a translation element is
the name of a labeled translation rule, which must consist of a
body only, the element acts as if the designated rule were copied
into its place with the Lraces stripped.

- 11 -

8.2 Intrabundle references

An intrabundle reference is a number designating another element
of the same bundle. An argument list may be supplied to an in-
trabundle reference (4.3). Intrabundle references are counted
backward starting from 0 at the element containing the reference.
ior example, if all parsing elements in this rule deliver trans-
ations

r:a={1} b=(321};
the bundle it delivers will bhave four elements
’s translation

a’s
(11
b°s translation
{321}

The 1 in the last element refers to the translation of b, 2 to
"¢{ 13}" and 3 to the translation of a; the other 1 refers to the
translation of a. Only the 0 element of a bundle is directly
accessible to its invoker; other elements of the bundle are
pulled out by intrabundle references in the 0 element (or by
interbundle references, 4.4).

Names may be used instead c¢f numbers for intrabundle references
within one parsing rule, rrovided that the parsing eiements that
have translations are indicated explicitly by suffixing each with
a period. A name, or alias, to denote the translation delivered
by a parsing element may follow the period with no intervening
blanks. If no alias is given and the element consists of a name
alone, then that name becores the alias. The preceding rule may
be rewritten in these ways, among others:

r: a. = ({1}.t k.= (atbi};
r: a. = {ajl}). bx=(aax};
4.3 Pa ers

A translation rule may have parameters, and if it does, their
number is declared by a parenthesized integer prefixed to its
body. Alternatively rarameters may be given names listed in the
leading parentheses, valid only in tlhe immediate rule body and
contained bodies, but not in kodies copied in place of ¢type (i)
elements (4.1). Parameters are referred to by name or ky $1,
$2,... counted from right tc left in the associated argument
list. An argument corresponding to a parameter is itself a
translation rule body, or a reference thereto, and is passed by
name (in the sense of Algol), s¢ that intrabundle references and
parameter references in an argument are evaluated in the environ-
ment of the invoking rule.

The next rule compiles Honeywell 6000 assembly code for a simple
case of Fortran subscripted variables:

-12-

svar: ident. < (> ident.subscr <) >
a (1) { <ILXLO0 > subscr *
$1 < > ident<,0> =)

A machine opcode is to be filled in for the parameter. Assuming
that “expr® compiles code to leave a result in the Q register,
this rule would handle assignments to such subscripted variables:

assign: svar. <=> expr. = (expr svar({<sTQ>}) }:

The next example compiles code for Boolean expressions over a set
of unspecified elementary predicates that set a condition code,
the state of which determines the outcome of *bt® (branch on
true) and 9bf" (false) instructions. The Boolean operators are
disjunction | and conjunction 6. Each translation rule has two
parameters, $2 and $1, which are respectively the destinations of
branches to be taken upon determining the truth or falsity of the
subexpression in question. %Lbl® is a rule that delivers a
unique label every time it is invoked.

disj: conj.

(<i{> 1bl. disj.

| (; fT.F{[conj((T}, (1bl}) 1bl<:> disj({T}.(F})}
conj: prim.)

(<&> 1lbl. conj.

| ‘7 fT.F){ prim ({(1bl}, (F}) 1bl<:> conj((T},(F})]
prim: pred. = (T,F) { pred< bt >T< bf >F * }

| <(> disj <)>;

Suppose that predicates are denoted by single letters and that
nlbl® generates the labels #1, #2, ... Then the crarsing element

parse ((disj. = { disj({<T>},(<PF>}) }))

applied to the expression aé (bjcéd) would yield (except for spac-
ing) the output

a bt #1 bf F
#1: bbt T bf #2
#2: ¢ bt #3 bf F
#3: A bt T bfF

4.4 Interbundle xeferences

An interbundle reference is a translation element of the form
m.n, where m and n are koth numbers; m must be a .legal intra-
bundle reference. Then the interbundle reference m.n picks out
the same translation as would an intrabundle reference n in the 0
element of that bundle.

Interbundle references furnish a trick for getting several trans-
lations from one parsing rule to be put together by an invoking

- 13 -

translation rule. The following example "doubles® a paren-
thesized list of identifiers. Members of the first output 1list
are separated by /, of the second by \, and the 1lists are
separated by |. The input "(a,b,c)" yields the output
"a/bsc|a\b\c*".)

double: <(> dbla. <)> = { dbla.t <|> dbla.0 };

dbla: ident.
(<,> dbla. = (ident </> dbla.1}. = {ident <\> dbla.0}
{ = (ident }. = { ident });

The rule "dbla% builds two different output lists that are final-
ly pasted together by *“double®. The notation %“dbla.0" means
just the same as "dbla"; it has been used to emphasize the fact
that it is expected to evcke only part of the designated bundle.

S« ARITHMETIC
5.1 Variables and arithmetic elements

all arithmetic is performed on 16-bit two’s complement integer
data. An integer variakle is declared and initialized by a lab-
eled unsigned octal number, thus

n: 1:
size: 03

An arithmetic element of a parsing rule is an exrression enclosed
in brackets [] that specifies a calculation to be performed as a
parsing action. Expressions involve variables, called lvalues as
in the language B [7], octal constants, parentheses and, in de-
creasing orxrder of precedence

unary operators
infix operators
conditional operators
assignment operators

All operators except unary * return an rvalue. Their meanings
(but not their precedences) are taken Jrom B.

5.2 Unary operators

Unary operators in a fprimary expression are evaluated right to
left. The unaries are

prefixed to an lvalue
++ increment and return new value
- decrement and return new value
& return lvalue

-1“-

postfixed to an lvalue

+*e increment and return old value

- decrement and return old value
prefixed to an rvalue

* indirection, take rvalue to be lvalue

- 1°s conrlement

| not, !x means x?0:1

2°s conplement

2.3 Ipfix operatoxs

Infix operators associate left-to-right

add

subtract

multiply

divide

remainder

and

or

exclusive or

less than

greater than

<= less than or equal to
>= greater than or equal to
== equal to

i= not equal to

> right shift (logical)
<< left shift (logical)

VA IR\ %I+

The comparison operators return 1 or 0 for true or false.
2.4 QQDQISIEQQI opexators

If el, €2 and e3 are three rvalues, then the conditional expres-
sion

el?e2:e3

has the value of e2 if e1 is nonzero, and otherwise e3. Only one
of e2 or e3 is evaluated.

The operator : (regarded as an infix operator between e1?e2 and
e3) associates from the right.

5.5 Assignment opexatoxrs

The operator = assigns the rvalue on its right to the lvalue on
its left. An = concatenated with any infix operator O is a
Htwo-address code® assignment operator; x=0 y means the same as x
= x O y provided the evaluation of x has no side effects.

- Assignment operators associate right-to-left.

- 15 -

5.6 Success and fajlure

1f the expression in an arithmetic element is followed by a ?
mark, then its rvalue is tested for nonzerc (success) or zero
(failure), otherwise an arithmetic element always succeeds. This
is a simple Fortran-style do-loog:

begin: (i = 1]
loop: .« . &
: (++i<=n?]\loop;

5.1 Arrays

A static array is allocated by initializing more than one loca-
tion with an octal constant, thus:

a: 1:2;354;

Subscrirting is not directly provided for static arrays, but can
be simulated by address computation, as in the expression
* (6A¢+4) , which when applied to the array A as initialized above
would pick out the rvalue 3. (Addresses of successive words
differ by 2, as is usual on the FDP-11.)

5.8 Variables in functions

Although the names of variakles have global scope, their values
can be pushed down for the duration of a rule, as in SNOBOL. The
builtin “push(n,v1,v2,...,vn)" saves the current values of the n
variables vi,v2,...,vn, toc be automatically restored when the
rule terminates. Variables to be pushed right at the start of a
rule may be listed after a semicolon within the ¥proc(.)" dec-
laration (3.5) instead of in a "“push(.)".

The following rule recognizes an octal integer and assigns to its
argument the numerical equivalent of the integer. The rule
pushes its temporary, i, tc avoid conflict with other uses of i
in the program. .

integer: proc(n;i) [n=0] inta

int1: {n = n*10+i]) inta\int1t;

inta: char (i) [i<70?]) { (1 =- 60)>=0?];

The builtin "char (i) * moves the cursor and assigns the ascii
value of the scanned character to variable i. The rule depends
upon knowing that the ascii codes for 0, 1, ... are octal 60,
61' L)

The next rule has the same effect as the builtin %octal(.)®" for
binary-to-octal conversion, provided the argument is not nega-
tive.

- 16 =

octal: proc(n;m,i) [1i = (m=n)%10]
([i==02) = (<0))
' e & o
| {(i==72] = (<73})
{m =/ 10?}/done
octal(m) = {12}
done: H

The purpose of m is to effect call by value. Were the rule writ-
ten as below, it would nct work because of a collision between
the argument passed by name and the temporary.

octal: proc(n;i) [1i = nk10]
([i==02] = {<0>})
|oco
| (1==72] = (K7D})
[i = n/10])/done
octal(i) = ¢ 1 2 3}
done: H

5.9 Character clags operations

Each character class is represented by a one-word mask. The mask
for each class declared in angle brackets <<>> contains exactly
one nonzero bit, different for each class. A zero mask denotes
the empty class, so "ignore(0)® and "ignore(<<>>)* behave simi-
larly, except the latter uses up ocne of the 16 mask bits.

Words made by or-ing may serve as masks for classes made from
unions of other classes. For example, given the following de-
clarations, the element [letter = ucase | lcase] makes "letter®
become the class of all letters in either case: '

ucase: <<ABCDEFGHIJKLMNOPQRSTUVWXYZ>>;
lcasge: <<abcdefghijklmnopgrestuvwxyz>>;
letter: 0;

6. TABLES

A table is a dynamically allocated array, identified by an
nonzero integer desjgnator. The builtin "table(t)" allocates a
new table and assigns its designator to the integer variable t.
The builtin "discard(t)'" destroys the designated table.

Bytes of a table are indexed. In arithmetic exgressions the
indexing notation, t{i], refers to the word occupying bytes i and
i+1 of table t (i may be odd).

A table may be used as a gymbol table that holds strings and one
§g%gg word of arbitrary information associated with each. The
uiltins

find (t,.i)
enter (t,1)

look up the current string in table t. If the string isn‘t al-
ready there, ®find(t,i)® fails, while "enter(t,i)" adds the
string and sets its value word to zero, unless the string is
empty. When they succeed, both assign the index of the value
word to variable i. No arithmetic assignments should be made to
any words of a symbol takle other than value words.

The builtin "getnam{t,i)" delivers the string of a symbol table
entry for a given index. Here is a variant of the rule "in-
stall%, given on page 4:

install: enter (t,i) getnam(t,i) ;
This version delivers a trivial alias--"X* followed by the index:
install: enter(t,i) octal(i) = { <X> 1 };

The next version delivers an alias that counts the temporal order
of entries. The first entry has alias x1, the second X2, and so
on. (In reading this example, remember that "=% does an assign-
ment, not a comparison.)

install: enter (t,1i)
([temp=t[i]?] | [temp—t[;]-+¢count])
octal(temp) = { <X> 1 }; .

count: 0;

temp: 03

Notice that the argument of *octal(.)" is a simple variable.
"Octal (t[i])" is not a legal function call.

Symbol tables are kept tree-sorted. Tables are stored on disk
and pertinent pages are brought into addressable memory as need-
ed. Erratic accessing patterns through large tables can thus be
costly in time. If no information is to be stored with them, the
strings may not have to be tabled at all. The first version of
"install" on this page can ke simulated, except in the handling
of null strings, by the builtin "scopy", which delivers the
current string.

install: scogy;
7. REDUCTIONS ANALYSIS

A f%pure® Tmg program, which uses no builtins except perhaps the
basic 1lexical functions “smark®, *any(.)", %“string(.)" and
"scopy" and no arithmetic, is a "top down" parsing and transla-
tion mechanism with ‘limited backup capability. However the
builtins "bundle® and reduce(.)" are bottom-up actions

- 1§ =

characteristic of reductions analysis. A few other builtins have
been added to facilitate reductions analysis.

S. C. Johnson and A. V. Aho have automated ¢the conatruction of
reductions . analysis parsers for certain deterministic grammars,
and the transliteration of these parsers into Tmng fprograms.
Their methods promise to make Tmg translators considerably more
persgpicuocus and less tedicus to write, since they start f£from a
BNF pattern for translation instead of from a parsing program.
Most notably, they are able to handle ambiguous grammars, which
are especially useful for describing special-case optimization.
With Tmg available underneath it is possible to mix top-down and
bottom=up to get the best of both.

The new builtins for' simple LR(k) parsing are *“stack", "un-
gtack() ", "accept® and “gotab" (8.2). "Bundle®" and "reduce(n)*
should not be intermixed in the same rule with #"stack", "un-
stack(.)"® and "accept". The use of these actions in real trans-
lators will be descriked Ly Johnson and Aho.

8. BUILTIN FUNCTIONS

8.1 Geperal catalog

This cataleg tells for each builtin what kind of arguments it
requires, if any, and whether it may:

(] move the cursor
T deliver a translation
F fail

Conventional meanings

¢ character class or name thereof
i name of variable
n number or name of variable
r parenthesized parsing rule or name of rule
t name of table designator
Nape CIE Function
any {c) CF scan current character; succeed if in class ¢ and
add character to current string (see pages 1,6)
append (1) append literal 1 to the current string
bundle T deliver (and make otherwise unavailable) to this
rule the translation, if any, that this rule
would deliver to its invoker if ¢this rule ter-
minated here (9)
char (i) CF assign the ascil equivalent of the next input
character to variable i; fail if no more charac-
ters (15)

decimal(n) T deliver n as a decimal string, with a - sign if
required

discard (t)
enter (t,i)

find(t,1)
getnam(t,i)

ignore(c)
octal (n)
params (n)
parse (r)

proc(11;12)

push (n,list)

reduce (n)

string(c)

table (t)

execute rule r and execute the translation it
delivers; agppend result to the diagnostic £file;
fail if r fails (4)

execute and forget last translation delivered to
this rule

discard table t

look up the current string in table t; enter if
not there; assign its index to variable i; fail
if current string is empty (17)

fail unconditionally

look up the current string in table t; assign its
index to variable i; fail if not there (17)
deliver the string of entry i in table t (17)
same as succ\r, but saves space and time

the ignored class becomes ¢ (6)

deliver n as an octal string

make n parameters available to this rule (8)
execute rule r and execute the translation it
delivers; arpend result to output file; fail if r
fails (3) .

a declaration, not a true builtin; 11 and 12 are
lists of names; performs “params(n1) push(n2,12)"
where n1 and n2 are lengths of 11 and 12 (8,15)
list has form i1,i2,...,in, where i1,...,in are
variable names; save the n values; restore them
when this rule ends (15)

bundle the last n translations delivered to this
rule (10)

deliver the current string (17)

assign the number of characters in current string
to variatle i

move to next nonignored character; clear the
current string (1,6)

scan up to next character not in class c; add the
scanned characters to the current string (1,6)
stop the program and dump it

succeed; a no-op

make a new table; assign its designator to t (16)

builtins for shift-reduce parsing
CTF Function

8.2 Special

gotab(list)

unstack (n)

unstack remaining labels stacked during this rule
and bundle (18)

list has form s1,11,sz,12,....0,1n. if top
stacked label is s1 go to 11, if 82 go to 12, ...
else go to 1n

place lakel of this element on stack (18)

remove last n labels stacked during this rule and
bundle all translations delivered since the label
so uncovered was stacked (18)

9. SYNTAX
2.1 Conventions

In the following syntactic specification terminal symbols are
underlined; nonterminals have names one or more letters long; all
symbols are separated by spaces. Each rule gives the name of a
nonterminal followed by the metasymbol ::=, then displays the
productions for that nonterminal separated by | signs.

Brackets ([] surround parts of a rule that may be repeated. The
right bracket is followed by a subscript denoting the minimum

number of repetitions, and a superscript for the maximum. A miss-
ing superscript permits unbounded repetition.

These primitive nonterminal symbols are used ,
name a string of letters and digits beginning with a
number ;e;g::mpty string of octal digits
char any ascii character except NUL _'

In general one or more blanks (ascii SP, HT or NL) must appear

between successive constituents of a production; however they may
be dropped when no ambiguities are so introduged.~

9.2 Ihe grammar
program ::= [statement]d

statement ::= comment | [label]1 tail

label tt= name 3
tail :t= [proec]s prule [label prule],

| trule | charcl | number [; number]o
proc ::= proc([names]g [£ (names]é]3 1
prule stz [disjy [1 disj]o]a
disj! ::z [pelem [., [name]5]g 1,
pelem | t:= pprime [[\ ! £]} pname]a N & pfule)

pprime2 ::= pname [_]A [{ parg [, parg]O)]]a
| [expr [2]é]| literal
| = name | =z trule

pname $t= name | $§ number

parg pname | number | (prule) | literal | charecl

expr lv assign expr | rv

oo
(1]
“"

rv

(rv 2 rvy]o primary [infix primary],

primary 3

1v [incdec]3 ! incdec 1lv

P & lv { { expr) | unary primary | number

lv t:= pname | & primary | (1v) | 1v [expr)
unary T B T g) B
asaign2 ti2 =2 [;nfix~lg
incdec iz 2+ | ==
infix ST S IS SV T T I B O >]
' bzz llzl S 121 g2t 22
trule t22 [([number | names]:)]A tbody
tbody 2iz L[telem), 1 '
telem ::= name | literal | $ number

! bundleref [(targ [, targ]o)}]s‘
bundleref ::z [name | number]} [. number]3

targ t:= name | tbody

names: HH

name [. name],

literald ::= < [char I, 218

charct¥ iz [}]a [<< [char], 2>],
comment® ::= /% [char lo &

1. if pelem begins with pname ., it can not be followed by
2. no spaces are permitted:
within an assignment operator
Just before (in pprime
no char after first may be >, blanks count as chars
fio char before last may be >, blanks count as chars
[char JO must not contain %/

Ut &Ww

- 22 -

10. SOURCES

Tmg has a long history stemming from McClure’s work on the CDC
1604, and subsequent development or. the IBM 7090, GE 635-645, and
DEC PDP-7 by the author, R. Morris and M. E. Barton [1,2]). Some
of the present design derives from insights from language theory
for which I am indebted to A. V. Aho and J. D. Ullman [3,4]). I
have freely borrowed code and appropriated language ideas from R.
Morris, L. L. Cherry, S. C. Johnson, K. L. Thompson and D. M.
Ritchie. :

Enough 1like its predecessors tc deserve the same name, this im-
plementation of Tmg and its unpublished predecessor on the PDP-7
introduced a new parsing discipline that has made possible the
use of reductions analysis, the avoidance of backup within a rule
{(thereby augmenting the class of languages "“naturally® parsable
by Tmg) and rules with parameters. Shallower, but nonetheless
useful innovations are tables and the handling of the current
string, uniform treatment of diagnostic and translated output,
the form of translation kodies, success branches, disjunctions
and other syntactic conventions. Internally, improved handling
of character classes and the elimination of many levels of
subroutine call both in parsing and translation have improved the
speed of Tmg; dynamically allocated tables have extended its
‘capacity so that it may fit comfortably in a minicomputer.

(1] R. M. McClure, TMG--A syntax-directed compiler, Proc. ACM
20th Natl. Conf. (1965) 262-274

(2] R. R. Penichel and M. D. McIlroy, Reference Manual for TMGL,
Multics System Programmer‘’s Manual, Project MAC, MIT (1967) Sec-
tion BN 4.02

(3] A. V. Aho, P. J. Denning and J. D. Ullman, Weak and Mixed
Strategy Precedence Parsing, JACM (19) 225-243

(4] A. Birman and J. D. Ullman, Parsing Algorithms with Back-
track, Conf. Record 11th Annual Symposium on Switching and Auto-
mata Theory, IEEE (1970) 153-174

