BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories,
Murray Hill, New Jersey 07974

ABSTRACT

BC is a language and a compiler for doing arbitrary precision arithmetic
on the PDP-11 under the UNIX time-sharing system. The output of the com-
piler is interpreted and executed by a collection of routines which can input,
output, and do arithmetic on indefinitely large integers and on scaled fixed-
point numbers.

These routines are themselves based on a dynamic storage allocator.
Overflow does not occur until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode
operation. Functions can be defined and saved for later execution.

Two five hundred-digit numbers can be muitiplied to give a thousand di-
git result in about ten seconds.

A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Some of the uses of this compiler are
— to do computation with large integers,
— to do computation accurate to many decimal places,
— conversion of numbers from one base to another base.

BC — An Arbitrary Precision Desk-Calculator Language

Lorinda Cherry

Robert Morris

Bell Laboratories,
Murray Hill, New Jersey 07974

Introduction

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX
time-sharing system [1]. The compiler was written to make conveniently available a collection
of routines (called DC [6])) which are capable of doing arithmetic on integers of arbitrary size.
The compiler is by no means intended to provide a complete programming language. It is a
minimal language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is
made for input and output in bases other than decimal. Numbers can be converted from de-
cimal to octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of
storage available on the machine. Manipulation of numbers with many hundreds of digits is
possible even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C
language [2,3]. Those who are familiar with C will find few surprises in this language.

Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by itself. For in-
stance, if you type in the line:
142857 + 285714
the program responds immediately with the line
428571

The operators —, *, /, %, and " can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be
negated (the ‘unary’ minus sign). The expression

7+—3 .

is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted
just as in Fortran, with ~ having the greatest binding power, then * and % and /, and finally +
and —. Contents of parentheses are evaluated before material outside the parentheses. Ex-
ponentiations are performed from right to left and the other operators from left to right. The
two expressions

a’b’c and a"(b"c)

are equivalent, as are the two expressions
a*b*c and (a®b)‘c

BC shares with Fortran and C the undesirable convention that
a/b*c is equivalent to (a/b)*c

Internal storage registers to hold numbers have single lower-case letter names. The value
of an expression can be assigned to a register in the usual way. The statement

X=Xx+3

has the effect of increasing by three the value of the contents of the register named x. When,
as in this case, the outermost operator is an =, the assignment is performed but the result is
not printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see
scaling below). The lines

x = sqrt(191)
X

produce the printed result
13

Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’,
initially set to 10, determines the base used for interpreting numbers read in. For example, the
lines

ibase = 8
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those
who deal in hexadecimal notation, the characters A—F are permitted in numbers (no matter
what base is in effect) and are interpreted as digits having values 10—15 respectively. The
statement

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The
lines

obase = 16
1000

will produce the output line
3ES8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are per-
mitted, and they are sometimes useful. For example, large numbers can be output in groups of
five digits by setting ‘obase’ to 100000. Strange (i.e. 1, 0, or negative) output bases are handled
appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are
continued end with \. Decimal output conversion is practically instantaneous, but output of
very large numbers (i.e., more than 100 digits) with other bases is rather slow. Non-decimal
output conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of
internal computation or on the evaluation of expressions, but only affect input and output
conversion, respectively.

Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated
quantities. Numbers may have up to 99 decimal digits after the decimal point. This fractional
part is retained in further computations. We refer to the number of digits after the decimal
point of a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations,
the result has a scale determined by the following rules. For addition and subtraction, the
scale of the result is the larger of the scales of the two operands. In this case, there is never
any truncation of the result. For multiplications, the scale of the result is never less than the
maximum of the two scales of the operands, never more than the sum- of the scales of the
operands and, subject to those two restrictions, the scale of the result is set equal to the con-
tents of the internal quantity ‘scale’. The scale of a quotient is the contents of the internal
quantity ‘scale’. The scale of a remainder is the sum of the scales of the quotient and the divi-
sor. The result of an exponentiation is scaled as if the implied multiplications were performed.
An exponent must be an integer. The scale of a square root is set to the maximum of the scale
of the argument and the contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits be-
ing discarded when necessary. In every case where digits are discarded, truncation and not
rounding is performed. '

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to
0. In case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can t. used in expressions just like
other variables. The line

scale = scale + 1
increases the value of ‘scale’ by one, and the line
scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in
internal computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computa-
tions (which are still conducted in decimal, regardless of the bases) are performed to the
specified number of decimal digits, never hexadecimal or octal or any other kind of digits.

Functions

The name of a function is a single lower-case letter. Function names are permitted to
collide with simple variable names. Twenty-six different defined functions are permitted in ad-
dition to the twenty-six variable names. The line

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form
auto x,y.z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic vari-
ables at each level of call are protected. The parameters named in a function definition are
treated in the same way as the automatic variables of that function with the single exception
that they are given a value on entry to the function. An example of a function definition is

define a(x,y){
auto z
z=x%
return(z)

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments en-
closed in parentheses and separated by commas. The result is unpredictable if the wrong
number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing
between them: b(). :

If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed and the line
x = a(a(3,4),5)
would cause the value of x to become 60.

Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a
subscripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function
names. Any fractional part of a subscript is discarded before use. Subscripts must be greater
than or equal to zero and less than or equal to 2047.

Subscripted variables may be freely used in expressions, in function calls, and in return
statements.

An array name may be used as an argument to a function, or may be declared as au-
tomatic in a function definition by the use of empty brackets:

f(al])
define f(a[])
auto al]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole ar-
rays cannot be used in any other contexts.

Control Statements

The ‘if", the ‘while’, and the ‘for’ statements may be used 10 alter the flow within pro-
grams or to cause iteration. The range of each of them is a statement or a compound state-
ment consisting of a collection of statements enclosed in braces. They are written in the fol-
lowing way)

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

or

if(relation) {statements}
while(relation) [statements}
for(expression1; relation; expression2) (statements}

A relation in one of the control statements is an expression of the form
x>y

where two expressions are related by one of the six relational operators <, >, <=, >=, ==,
or !=. The relation == stands for ‘equal to’ and != stands for ‘not equal to’. The meaning of
the remaining relational operators is clear.

BEWARE of using = instead of == in a relational. Unfoi.unately, both of them are le-
gal, so you will not get a diagnostic message, but = really will not do a comparison.

The ‘if° statement causes execution of its range if and only if the relation is true. Then
control passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range and if the relation is false, con-
trol passes to the next statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if
true, the statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed.
The relation is tested, and so on. The typical use of the *for’ statement is for a controlled itera-
tion, as in the statement

for(iml; i<w=m]0; jmi+1) i

which will print the integers from 1 1o 10. Here are some examples of the use of the control
statements,

define f(n){

auto i, x

xm=]

for(i=1; i<=n; i=i+1) x=x*i
return(x)

The line
f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){

auto x, j

x=|

for(j=1; j<=m; j=j+1) x=x*(n=j+1)/j
return(x)

The following function computes values of the exponential function by summing the appropri-
ate series without regard for possible truncation errors:

scale = 20
define e(x){
auto a, b,c,d, n
aml]
b=
c=1
d=0
n=1
while(1m=]){
a = a®x
b = b*n
c=c+alb
n=n+1
if(c==d) return(c)
d=c¢c

Some Details

There are some language features that every user should know about even if he will not
use them.

Normally statements are typed one to a line. It is also permissible to type several state-
ments on a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used any-
where that an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = ali=i+1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C
language. Consuit the appendix or the C manuals [2,3] for their exact workings.

x=y=z is the same as x=(y=z)
X=+y X = X+y
X ==y X = X=y
x="y X = x*y
x=/y X = xly
x=%y X = x%y
x="y x=Xxy
x++ (x=x+1)-1
X—— (x=x-1)+1
++x : x =x+1
—X X =x—1

Even if you don’t intend to use the constructs, if you type one inadvertently, something
correct but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real
difference between x=—y and X= =y, The first replaces x by x—y and the second by —y.

Three Important Things
1. To exit a BC program, type ‘quit’.
2. There is a comment convention identical to that of C and of PL/Il. Comments begin
with */** and end with **/".
3. There is a library of math functions which may be obtained by typing at command lev-
el
bc —I

This command will load a set of library functions which, at the time of writing, consists of sine
(named ‘s’), cosine (‘c’), arctangent (‘a’), natural logarithm (‘I'), exponential (‘e’) and Bessel
functions of integer order (‘j(n,x)’). Doubtless more functions will be added in time. The li-
brary sets the scale to 20. You can reset it to something else if you like. The design of these
mathematical library routines is discussed elsewhere {4].

If you type
be file ...

BC will read and execute the named file or files before accepting commands from the key-
board. In this way, you may load your favorite programs and function definitions.

Acknowledgement

The compiler is written in YACC [5]; its original version was written by S. C. Johnson.

References

(1
(2]
(3]
[4

(51
(6]

K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Fifth Edition (1974)
D. M. Ritchie, C Reference Manual.
B. W. Kernighan, Programming in C: A Tutorial.

Robert Morris, A Library of Reference Standard Mathematical Subroutines, Internal
memorandum, Bell Laboratories, 1975.

S. C. Johnson, YACC, Yet Another Compiler-Compiler.
R. Morris and L. L. Cherry, DC — An Interactive Desk Calculator.

Appendix

1. Notation

In the following pages synitactic categories are in iralics; literals are in bold; material in
brackets [} is optional.

2. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token
separators may be blanks, tabs or comments. Newline characters or semicolons separate state-
ments.

2.1. Comments
Comments are introduced by the characters /* and terminated by */.

2.2. ldentifiers

There are three kinds of identifiers — ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may
be indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are fol-
lowed by parentheses, possibly enclosing arguments. The three types of identifiers do not
conflict; a program can have a variable named x, an array named x and a function named x, all
of which are separate and distinct.

2.3. Keywords
The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto

length return
while quit
for

2.4. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexa-
decimal digits A—F are also recognized as digits with values 10—15, respectively.

3. Expressions

The value of an expression is printed unless the main operator is an assignment. Pre-
cedence is the same as the order of presentation here, with highest appearing first. Left or
right associativity, where applicable, is discussed .with each operator.

-10-

3.1. Primitive expressions

3.1.1. Named expressions

Named expressions are places where values are stored. Simply stated, named expressions
are legal on the left side of an assignment. The value of a named expression is the value
stored in the place named.

3.1.1.1. identifiers
Simple identifiers are named expressions. They have an initial value of zero.

3.1.1.2. array-namel expression|
Array elements are named expressions. They have an initial value of zero.

3.1.1.3. scale, ibase and obase

The internal registers scale, ibase and obase are all named expressions. scale is the
number of digits after the decimal point to be retained in arithmetic operations. scale has an
initial value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

3.1.2. Function calls

3.1.2.1. function-name(lexpression |, expression...}])

A function call consists of a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. A whole array passed
as an argument is specified by the array name followed by empty square brackets. All function
arguments are passed by value. As a result, changes made to the formal parameters have no
effect on the actual arguments. If the function terminates by executing a return statement, the
value of the function is the value of the expression in the parentheses of the return statement
or is zero if no expression is provided or if there is no return statement.

3.1.2.2. sqrt(expression)

The result is the square root of the expression. The result is truncated in the least
significant decimal place. The scale of the result is the scale of the expression or the value of
scale, whichever is larger.

3.1.2.3. length(expression)

The result is the total number of significant decimal digits in the expression. The scale of
the result is zero.

3.1.2.4. scale(expression) :
The result is the scale of the expression. The scale of the result is zero.

3.1.3. Constants
Constants are primitive expressions.

-11 -

3.1.4. Parentheses

An expression surrounded by parentheses is a
used to alter the normal precedence.

3.2. Unary operators
The unary operators bind right to left.

3.2.1. = expression
The result is the negative of the expression.

3.2.2. <+ named-expression

The named expression is incremented by one.

pression after incrementing.

3.2.3. —— named-expression

The named expression is decremented by one
pression after decrementing.

3.2.4. named-expression+-+

The named expression is incremented by one.

pression before incrementing.

3.2.5. named-expression——

The named expression is decremented by one
pression before decrementing.

3.3. Exponentiation operator

primitive expression. The parentheses are

The result is the value of the named ex-

. The result is the value of the named ex-

The result is the value of the named ex-

. The result is the value of the named ex-

The exponentiation operator binds right to left.

3.3.1. expression " expression
The result is the first expression raised to t

he power of the second expression. The

second expression must be an integer. If a is the scale of the left expression and b is the abso-
lute value of the right expression, then the scale of the result is:

min (ax b, max (scale,a))

3.4. Multiplicative operators
The operators *, /, % bind left to right.

3.4.1. expression ™ expression

The result is the product of the two expressions. If a and b are the scales of the two ex-

pressions, then the scale of the result is:
min (a+b, max (scale,a,b))

3.4.2. expression / expression

The result is the quotient of the two expressions. The scale of the result is the value of
scale.

3.4.3. expression % expression

The % operator produces the remainder of the division of the two expressions. More pre-
cisely, @%b is a—a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale

3.5. Additive operators
The additive operators bind left to right.

3.5.1. expression 4+ expression

The result is the sum of the two expressions. The scale of the result is the maximun of
the scales of the expressions.

3.5.2. expression = expression

The result is the difference of the two expressions. The scale of the result is the max-
imum of the scales of the expressions.

3.6. assignment operators
The assignment operators bind right to left.

3.6.1. named-expression = expression

This expression results in assigning the value of the expression on the right to the named
expression on the left.

3.6.2. named-expression =+ expression
3.6.3. named-expression m— expression
3.6.4. named-expression =* expression
3.6.5. named-expression =/ expression
3.6.6. named-expression m% expression

3.6.7. named-expression =" expression

The result of the above expressions is equivalent to “named expression = named expres-
sion OP expression”, where OP is the operator after the = sign.

4. Relations

‘Unlike all other operators, the relational operators are only valid as the object of an if,
while, or inside a for statement.

-13-

4.1. expression < expression
4.2. expression > expression
4.3. expression <= expression
4.4. expression >= expression
4.5. expression expression
4.6. expression = expression

5. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers
that are to be local to a function need be declared with the auto command. The arguments to
a function are local to the function. All other identifiers are assumed to be global and available
to all functions. All identifiers, global and local, have initial values of zero. Identifiers declared
as auto are allocated on entry to the function and released on returning from the function.
They therefore do not retain values between function calls. auto arrays are specified by the ar-
ray name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/L
On entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

6. Statements

Statements must be separated by semicolon or newline. Except where altered by control
statements, execution is sequential.

6.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value
of the expression is printed, followed by a newline character.

6.2. Compound statements

Statements may be grouped together and used when one statement is expected by sur-
rounding them with { }. :

6.3. Quoted string statements
"any string”
This statement prints the string inside the quotes.

6.4. If statements

if (relation) statement .
The substatement is executed if the relation is true.

-l4-

6.5. While statements

while(relation) statement

The statement is executed while the relation is true. The test occurs before each execu-
tion of the statement.

6.6. For statements

for(expression; relation; expression) statement

The for statement is the same as
first-expression
while(relation) |

statement

last-expression

All three expressions must be present.

6.7. Break statements

break
break causes termination of a for or while statement.

6.8. Auto statements

auto identifier(,identifier)

The auto statement causes the values of the identifiers to be pushed down. The
identifiers can be ordinary identifiers or array identifiers. Array identifiers are specified by fol-
lowing the array name by empty square brackets. The auto statement must be the first state-
ment in a function definition.

6.9. Define statements

define([parameter(, parameter...}])
statements)

The define statement defines a function. The parameters may be ordinary identifiers or
array names. Array names must be followed by empty square brackets.

6.10. Return statements
return

return(expression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(0). The result of the
function is the result of the expression in parentheses.

6.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when
it is first encountered. Because it is not treated as an executable statement, it cannot be used
in a function definition or in an {if, for, or while statement.

