UNIX Assembler Reference Manual

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey

0. Introduction

This document describes the usage and input syntax of the UNIX PDP-11 assembler as. The details of
;.rl\e PDP-11 are not described; consult the DEC documents *“PDP-11/20 Handbook™ and *‘PDP-11/45
andbook.”

The input syntax of the UNIX assembler is generally similar to that of the DEC assembler PAL-11R,
although its internal workings and output format are unrelated. It may be useful to read the publica-
tion DEC-11-ASDB-D, which describes PAL-11R, although naturally one must use care in assuming that
its rules apply to as.

As is a rather ordinary two-pass assembler without macro capabilities. It produces an output file which
conlains relocation information and a complete symbol table; thus the output is acceptable to the UNIX
link-editor /d, which may be used to combine the outputs of several assembler runs and to obtain ob-
ject programs from libraries. The output format has been designed so that if a program contains no
unresolved references 10 external symbols, it is executable without further processing.

1. Usage
as is used as follows:

as [—] file, .

If the optional *“="" argument is given, all undefined symbols in the current assembly will be made
undefined-external. See the .globl directive below.

The other arguments name files which are concatenated and assembled. Thus programs may be writ-
ten in several pieces and assembled together.

The output of the assembler is placed on the file a.out in the current directory. If there were no un-
resolved external references, and no errors detected, a.our is made executable; otherwise, if it is pro-
duced at all, it is made non-executable.

2. Lexical conventions

Assembler tokens include identifiers (alternatively, “‘symbols™ or “names™), temporary symbols, con-
stants, and operators.

2.1 Identifiers

An identifier consists of a sequence of alphanumeric characters (mcludmg period **. ", underscore **_",
and tilde *™ as alphanumeric) of which the first may not be numeric. Only the first eight characters
are significant. When a name begins with a tilde, the tilde is discarded and that occurrence of the
identifier generates a unique entry in the symbol table which can match no other occurrence of the
identifier. This feature is used by the C compiler to place names of local variables in the output sym-

Assembler Manual - 2

bol 1able without having to worry about making them unique.

2.2 Temporary symbols

A l§emporary symbol consists of a digit followed by “f™ or *‘b™. Temporary symbols are discussed fully
in §5.1.

2.3 Constants

An octal constant consists of a sequence of digits; *8" and **9™ are taken to have octal value 10 and 11.
The constant is truncated to 16 bits and interpreted in two’s complement notation.

A decimal constant consists of a sequence of digits terminated by a decimal point “.”". The magnitude
of the constant should be representable in 15 bits; i.e., be less than 32,768.

A single-character constant consists of a single quote “ '™ foliowed by an ASCll character not a new-
line. Certain dual-character escape sequences are acceptable in place of the ASCII character to represent
new-line and other non-graphics (see String statements, §5.5). The constant’s value has the code for the
given character in the least significant byte of the word and is null-padded on the left.

A double-character constant consists of a double quote “ " followed by a pair of AsCll characters not
including new-line. Certain dual-character escape sequences are acceptable in place of either of the
ASCIl characters to represent new-line and other non-graphics (see String statements, §5.5). The
constant’s value has the code for the first given character in the least significant byte and that for the
second character in the most significant byte.

2.4 Operators
There are several single- and double-character operators; see §6.

2.5 Bianks

Blank and tab characters may be interspersed freely between tokens, but may not be used within to-
kens (except character constants). A blank or tab is required to separate adjacent identifiers or con-
stants not otherwise separated.

2.6 Comments

The character /™ introduces a comment, which extends through the end of the line on which it ap-
pears. Comments are ignored by the assembler.

3. Segments

Assembled code and data fall into three segments: the text segment, the data segment, and the bss
segment. The text segment is the one in which the assembler begins, and it is the one into which in-
structions are typically placed. The UNIX system will, if desired, enforce the purity of the text segment
of programs by trapping write operations into it. Object programs produced by the assembler must be
processed by the link-editor /d (using its “=n" flag) if the text segment is to be write-protected. A
single copy of the text segment is shared among all processes executing such a program.

The data segment is available for placing data or instructions which will be modified during execution.
Anything which may go in the text segment may be put into the data segment. In programs with
write-protected, sharable text segments, data segment contains the initialized but variable parts of a
program. If the text segment is not pure, the data segment begins immediately after the text segment;
_if the text segment is pure, the data segment begins at the lowest 8K byte boundary after the text seg-
ment.

The bss segment may not contain any explicitly initialized code or data. The length of the bss segment
(like that of text or data) is determined by the high-water mark of the location counter within it. The
bss segment is actually an extension of the data segment and begins immediately after it. At the start
of execution of a program, the bss segment is set t0 0. Typically the bss segment is set up by state-
ments exemplified by

lab: . = .+10

Assembler Manual - 3

The‘ advantage in using the bss segment for storage that starts off empty is that the initialization infor-
mation need nol be stored in the output file. See also Location counter and Assignment statements below.

4. The location counter

One special symbol, **.", is the location counter. Its value at any time is the offset within the ap-
propriate segment of the start of the statement in which it appears. The location counter may be as-
signed 1o, with the restriction that the current segment may not change; furthermore, the value of *.™
may not decrease. If the effect of the assignment is 10 increase the value of **. ", the required number

of null bytes are generated (but see Segments above).

§. Statements

A source program is composed of a sequence of statements. Stalements are separated either by new-
|I.l'IeS or by semicolons. There are five kinds of statements: null statements, expression statements, as-
signment statements, string statements, and keyword statements.

Any kind of statement may be preceded by one or more labels.

5.1 Labels

There are two kinds of label: name labels and numeric labels. A name label consists of a name fol-
lowed by a colon (:). The effect of a name label is 0 assign the current value and type of the location

counter **.™ to the name. An error is indicated in pass 1 if the name is already defined; an error is in-
dicated in pass 2 if the *." value assigned changes the definition of the label.

A numeric label consists of a digit 010 9 followed by a colon (:). Such a label serves to define tem-
porary symbols of the form *“nb™ and “nf>, where n is the digit of the label. As in the case of name
labels, a numeric label assigns the current value and type of **.” to the temporary symbol. However,
several numeric labels with the same digit may be used within the same assembly. References of the
form *nf™ refer 1o the first numeric label “n:™ forward from the reference; *nb™ symbols refer to the
first “n:" label backward from the reference. This sort of temporary label was introduced by Knuth
{The Art of Computer Programming, Vol I: Fundamental Aigorithms]. Such labels tend to conserve both
the symbol table space of the assembler and the inventive powers of the programmer.

5.2 Null statements

A null statement is an empty statement (which may, however, have labels). A null statement is ig-
nored by the assembler. Common exampies of null statements are empty lines or lines containing
only a label.

5.3 Expression statements

An expression statement consists of an arithmeltic expression not beginning with a keyword. The as-
sembler computes its (16-bit) value and places it in the output stream, together with the appropriate
relocation bits.

5.4 Assignment statements

An assignment statement consists of an identifier, an equals sign (=), and an expression. The value
and type of the expression are assigned to the identifier. It is not required that the type or value be
the same in pass 2 as in pass 1, nor is it an error Lo redefine any symbol by assignment.

Any external attribute of the expression is lost across an assignment. This means that it is not possible
to declare a global symbol by assigning to it, and that it is impossible to define a symbol to be offsel
from a non-locally defined global symbol.

As mentioned, it is permissible 1o assign to the location counter *“.". It is required, however, that the

FEEE L)

type of the expression assigned be of the same type as **. ", and it is forbidden to decrease the value of
*.”. In practice, the most common assignment to **." has the form *.=.+n" for some number n;

Assembler Manual - 4

this has the effect of generating » null bytes.

5.5 String statements

A string statement generates a sequence of bytes containing ASCl! characters. A string statement con-
sists of a left string quote ** <" followed by a sequence of AsCll characters not including newline, fol-
lowed by a right string quote *>". Any of the ASCll characters may be replaced by a two-character es-
cape sequence 10 represent certain non-graphic characters, as follows:

\n NL 012)
\l HT (011)
\e eoT (004)
\0 NuL (000)
\r CR (015)
\a ACK (006)
\p PFX (033)
A} \

\> >

The last two are included so that the escape character and the right string quote may be represented.
The same escape sequences may also be used within single- and double-character constants (see §2.3
above).

5.6 Keyword statements

Keyword statements are numerically the most common type, since most machine instructions are of
this sort. A keyword statement begins with one of the many predefined keywords of the assembler:
the syntax of the remainder depends on the keyword. All the keywords are listed below with the syn-
tax they require.
6. Expressions

An expression is a sequence of symbols representing a value. Its constituents are identifiers, constants,
temporary symbols, operators, and brackets. Each expression has a type.

All operators in expressions are fundamentally binary in nature; if an operand is missing on the left, a
0 of absolute type is assumed. Arithmeltic is two's complement and has 16 bits of precision. All opera-
tors have equal precedence, and expressions are evaluated strictly left to right except for the effect of
brackets.
6.1 Expression operators
The operators are:

(blank) when there is no operator between operands, the effect is exactly the same as if a

“+" had appeared.
+ addition

- subtraction

* multiplication

V division (note that plain ** /™ starts a comment)
& bitwise and

| bitwise or

>> logical right shift

<< logical left shift

% modulo

! a'bis aor (not b); ie., the or of the first operand and the one’s complement of the

Assembler Manual - 5

second; most common use is as a unary.

result has the value of first operand and the type of the second; most often used 1o
define new machine instructions with syntax identical to existing instructions.

Expressions may be grouped by use of square brackets **[]". (Round parentheses are reserved for ad-
dress modes.)

6.2 Types

The assembler deals with a number of types of expressions. Most types are attached to keywords and
used to select the routine which treats that keyword. The types likely to be met explicitly are:

undefined

Upon first encounter, each symbol is undefined. It may become undefined if it is as-
signed an undefined expression. It is an error to attempt to assemble an undefined ex-
pression in pass 2; in pass 1, it is not (except that certain keywords require operands
which are not undefined).

undefined external

A symbol which is declared .globl but not defined in the current assembly is an
undefined external. If such a symbol is declared, the link editor /d must be used 1o load
the assembler's output with another routine that defines the undefined reference.

absolute

text

data

bss

An absolute symbol is one defined ultimately from a constant. Its value is unaffected by
any possible future applications of the link-editor to the output file.

The value of a text symbol is measured with respect 1o the beginning of the text segment
of the program. If the assembler output is link-edited, its text symbols may change in
value since the program need not be the first in the link editor’s output. Most text sym-
bols gre defined by appearing as labels. At the start of an assembly, the value of *." is
text 0.

The value of a data symbol is measured with respect to the origin of the data segment of
a program. Like text symbols, the value of a data symbol may change during a subse-
quent link-editor run since previously loaded programs may have data segments. After
the first .data statement, the value of **." is data 0.

The value of a bss symbol is measured from the beginning of the bss segment of a pro-
gram. Like text and data symbols, the value of a bss symbol may change during a subse-
quent link-editor run, since previously loaded programs may have bss segments. After
the first .bss statement, the value of *.™ is bss 0.

external absolute, text, data, or bss

symbols declared .globl but defined within an assemtb!y as absolute, text, data, or bss sym-
bols may be used exactly as if they were not declared .globl: however, their value and
type are available to the link editor so that the program may be loaded with others that
reference these symbols.

register
The symbols
0 ...r5
fr0 ... frS
sp
pc

are predefined as register symbols. Either they or symbols defined from them must be
used to refer to the six general-purpose, six floating-point, and the 2 special-purpose
machine registers. The behavior of the floating register names is identical to that of the

Assembler Manual - 6

corresponding general register names; the former are provided as a mnemonic aid.

other types
Each keyword known 10 the assembler has a type which is used 10 select the routine
which processes the associated keyword statement. The behavior of such symbols when
not used as keywords is the same as if they were absolute.

6.3 Type propagation in expressions

When operands are combined by expression operators, the result has a type which depend§ on the
types of the operands and on the operator. The rules involved are complex 10 state but were intended
10 be sensible and predictable. For purposes of expression evaluation the important types are

undefined
absolute

text

dala

bss

undefined external
other

The combination rules are then: If one of the operands is undefined, the result is undefined. If both
operands are absolute, the result is absolute. If an absolute is combined with one of the *“‘other types™
mentioned above, or with a register expression, the result has the register or other type. As a conse-
quence, one can refer 1o r3 as “r0+3". If two operands of “‘other type” are combined, the result has
the numerically larger type (not that this fact is very useful, since the values are not made public). An
“other type” combined with an explicitly discussed type other than absolute acts like an absolute.

Further rules applying to particular operators are:

+ If one operand is text-, data-, or bss-segment relocatable, or is an undefined external,
the result has the postulated type and the other operand must be absolute.

- If the first operand is a relocatable text-, data-, or bss-segment symbol, the second
operand may be absolute (in which case the result has the type of the first operand); or
the second operand may have the same type as the first (in which case the result is ab-
solute). If the first operand is exlernal undefined, the second must be absolute. All
other combinations are illegal.

This operator follows no other rule than that the result has the value of the first
operand and the type of the second.

others [t is illegal 10 apply these operators 1o any but absolute symbols.

7. Pseudo-operations

The keywords listed below introduce statements which generate data in unusual forms or influence the
later operations of the assembler. The metanotation

[swff]...

means that 0 or more instances of the given stuff may appear. Also, boldface tokens are literals, italic
words are substitutable.

7.1 .byte expression | , expression] ...

The expressions in the comma-separated list are truncated to 8 bits and assembled in successive bytes.
Thg expressions must be absolute. This statement and the string statement above are the only ones
which assemble data one byte at at time.

7.2 .even

LTI AL

If the location counter **." is odd, it is advanced by one so the next statement will be assembled at a

Assembler Manual - 7

word boundary.

1.3 .if expression

The expression must be absolute and defined in pass |. If its value is nonzero, the .if is ignored: if
zero, the statements between the .if and the matching .endif (below) are ignored. .if may be nested.
The effect of .if cannot extend beyond the end of the input file in which it appears. (The statements
are not totally ignored, in the following sense: .ifs and .endifs are scanned for, and moreover all names
are entered in the symbol table. Thus names occurring only inside an .if will show up as undefined if
the symbol table is listed.)

74 .endif
This statement marks the end of a conditionally-assembled section of code. See .if above.

7.5 .globl name { , name] ...

This statement makes the names external. If they are otherwise defined (by assignment or appearance
as a label) they act within the assembly exactly as if the .globl statement were not given:. however, the
link editor /d may be used 1o combine this routine with other routines that refer these symbols.

Conversely, if the given symbols are not defined within the current assembly, the link editor can com-
bine the output of this assembly with that of others which define the symbols.

As discussed in §1, it is possible 1o force the assembler 10 make all otherwise undefined symbols exter-
nal.

7.6 .text
7.7 .data
7.8 .bss

These three pseudo-operations cause the assembler to begin assembling into the text, data, or bss seg-
ment respectively. Assembly starts in the text segment. It is forbidden to assemble any code or data
into the bss segment, but symbols may be defined and **." moved about by assignment.

19 .comm name , expression
Provided the name is not defined elsewhere, this stalement is equivalent 10

.globl name
name = expression -~ name

That is, the type of name is “‘undefined external™, and its value is expression. In fact the name behaves
in the current assembly just like an undefined external. However, the link-editor /d has been special-
cased so that all external symbols which are not otherwise defined, and which have a non-zero value,
are defined to lie in the bss segment, and enough space is left after the symbol to hold expression bytes.
All symbols which become defined in this way are located before all the explicitly defined bss-segment
locations.

8. Machine instructions

Because of the rather complicated instruction and addressing structure of the PDP-11, the syntax of
machine instruction statements is varied. Although the following sections give the syntax in detail, the
11/20 and 11/45 handbooks should be consulted on the semantics.

8.1 Sources and Destinations

The syntax of general source and destination addresses is the same. Each must have one of the fol-
lowing forms, where reg is a register symbol, and expr is any sort of expression:

Assembler Manual - 8

synlax words mode
reg 0 O+reg
(reg)+ 0 2+reg
—(reg) 0 4<+reg
(expr)(reg) (1) ?+reg
reg +reg
* reg 0 1 +reg
*(reg)+ 0 3+reg
* —(reg) 0 S+reg
*(reg) 1 T+reg
* expr(reg) 1 T+reg
expr I 67
$ expr] 27
* expr] 77
*$ expr 1 37

The words column gives the number of address words generated; the mode column gives the octal
address-mode number. The syntax of the address forms is identical to that in DEC assemblers, except
that “*"" has been substituted for @™ and *$" for “#; the UNIX typing conventions make @ and
“#" rather inconvenient.

Notice that mode **reg"” is identical 10 *(reg)”: that ***(reg)" generates an index word (namely, 0);
and that addresses consisting of an unadorned expression are assembled as pc-relative references in-
dependent of the type of the expression. To force a non-relative reference, the form “*$expr™ can be
used, but notice that further indirection is impossible.

8.3 Simple machine instructions
The following instructions are defined as absolute symbols:

cle
clv
clz
cin
sec’
sev
sez
sen

They therefore require no special syntax. The pDP-11 hardware allows more than one of the “clear”
class, or alternatively more than one of the “set™ class to be or-ed together: this may be expressed as
follows:

cic | clv

8.4 Branch

The following instructions take an expression as operand. The expression must lie in the same seg-
ment as the reference, cannot be undefined-external, and its value cannot differ from the current loca-
tion of **.™ by more than 254 bytes:

Assembler Manual - 9

br blos

bne bve

beq bvs

bge bhis

bt bec (= bee)
bgt bee

ble blo

bpl bes

bmi bes (= bes)
bhi

bes (“‘branch on error set”) and bec (“branch on error clear”) are intended to test the error bit re-
turned by system calls (which is the c-bit).

8.5 Extended branch instructions

The following symbols are followed by an expression representing an address in the same segment as
*.". If the target address is close enough, a branch-type instruction is generated: if the address is t0o
far away, a jmp will be used.

jbr jlos
jne jve
Jeq jvs
ige jhis
i jec
ist jce
jle jlo
jpl jes
jmi jes
jhi

jbr turns into a plain jmp if its target is 100 remote; the others (whose names are contructed by replac-
ing the “b” in the branch instruction’s name by i) turn into the converse branch over a jmp to the
target address.

8.6 Single operand instructions

The foliowing symbols are names of single-operand machine instructions. The form of address expect-
ed is discussed in §8.1 above.

clr sbcb
cirb ror
com rorb
comb rol
inc rolb
incb asr
dec asrb
decb asl
neg aslb
negb jmp
adc swab
adch tst
sbe tstb

8.7 Double operand instructions

The following instructions take a general source and destination (§8.1), separated by a comma, as
operands.

Assembler Manual - 10

mov
movb
cmp
cmpb
bit
bitb
bic
bick
bis
bisb
add
sub

8.8 Miscellaneous instructions

The following instructions have more specialized syntax. Here reg is a register name, src and dst a gen-
eral source or destination (§8.1), and expr is an expression:

jsr reg.dst

rts reg

sys expr

ash src, reg (or, als)
ashc src,reg (or, alsc)
mul src,reg (or, mpy)
div src,reg (or, dvd)
xor reg, dst

sxt - dst

mark expr

sob reg, expr

sys is another name for the trap instruction. It is used to code system calls. Its operand is required to
be expressible in 6 bits. The alternative forms for ash, ashe, mul, and div are provided to avoid conflict
with EAE register names should they be needed.

The expression in mark must be expressible in six bits, and the expression in sob must be in the same
segment as *“. ", must not be external-undefined, must be less than *.™, and must be within 510 bytes
of *.™.

8.9 Floating-point unit instructions

The following floating-point operations are defined, with syntax as indicated:

cfee

setf

. setd

seti

set]

cief fdst

negf fdst

absf fdst

tstf JSsre

movf fsrc, freg (= Idf)
movf freg, fdst (= stf)
movif src, freg (= Idcif)
movfi freg, dst (= stefi)
movof fsrc, freg (= idcdf)
movfo freg, fdst (= stefd)
movie src, freg (= Idexp)
movei freg, dst (= stexp)

addf fere, freg
subf fsrc, freg

Assembler Manual - 11

mulf fsrc, freg
divlf fsrc, freg
cmpf fsre, freg
modf fsrc, freg

ldfps src
stfps dsr
stst dst

}3‘rc ,_fdsl, and freg mean floating-point source, destination, and register respectively. Their syntax is
identical to that for their non-floating counterparts, but note that only floating registers 0—23 can be a
JSreg.

The names of several of the operations have been changed (o bring out an analogy with certain fixed-
point instructions. The only strange case is movf, which turns into either stf or 1df depending respec-
tively on whether its first operand is or is not a register. Warning: ldf sets the floating condition
codes, stf does not.

9. Other symbols

9.1 ..

The symbol “..™ is the relocation counter. Just before each assembled word is placed in the output
stream, the current value of this symbol is added to the word if the word refers to a text, data or bss
segment location. If the output word is a pc-relative address word which refers to an absolute location,
the value of **.." is subtracted.

Thus the value of **.."™ can be taken 10 mean the starting core location of the program. In UNIX sys-
tems with relocation hardware, the initial value of **.." is 0.

The value of *“..™ may be changed by assignment. Such a course of action is sometimes necessary,
but the consequences should be carefully thought out. It is particularly ticklish to change **..” mid-
way in an assembly or 10 do so in a program which will be treated by the loader, which has its own no-

"

tions of **..™.

9.2 System calis

The following absolute symbols may be used to code calls to the UNIX sysiem (see the sys instruction
above).)

break nice
chdir open
chmod read
chown seek
close setuid
creat signal
exec stat
exit stime
fork stty
fstat tell
getuid time
gtty umount
link unlink
makdir wait
mdate write
mount

Warning: the wait system call is not the same as the wait instruction, which is not defined in the as-
sembler.
10. Diagnostics

When an input file cannot be read, its name followed by a question mark is typed and assembly ceases.
When syntactic or semantic errors occur, a single-character diagnostic is typed out together with the

Assembler Manual - 12

line number and the file name in which it occurred. Errors in pass | cause cancellation of pass 2. The
possible errors are:

) parentheses error

] parentheses error

> string not terminated properly

* indirection (*) used illegally

. illegal assignment to **.™

A error in address’

B branch address is odd or too remote

E error in expression

F errorin local (*f* or **b"") type symbol
G parbage (unknown) character

i end of file inside an .if

M mulliply defined symbol as label

o word quantity assembled at odd address
P phase error— **." different in pass | and 2
R relocation error

v undefined symbol

X syntax error

