The Unix /0 System

Dennis M. Ritchie
Bell Telephone Laboratories

This paper gives an overview of the workings of the Unix 1/0 system. It was written with an eye toward
providing guidance to writers of device driver routines, and is oriented more toward describing the en-
vironment and nature of device drivers than the implementation of that part of the file system which
deals with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file system as discussed
in the paper “The Unix Time-sharing System.” Moreover the present document is intended to be used in
conjunction with a copy of the system code, since it is basically an exegesis on that code.

Device Classes

There are two classes of device: block and character. The block interface is suitable for devices like disks,
tapes, and DECtape which do, or can, work in 512-byte blocks and can be used in direct-access fashion.
Ordinary magtape just barely fits in this category. Block devices can at least potentially contain a mount-
ed file system. The interface to block devices is very highly structured; the drivers for these devices
share a great many routines as well as a pool of buffers.

Character-type devices have a much more straightforward interface, although more work must be done
by the driver itself.

Devices of both types are named by a mgjor and a minor device number. These numbers are generally
stored as a word with the minor device number as the low byte and the major device number as the high
byte. The major device number selects which driver will deal with the device; the minor device number
is not used by the rest of the system but is passed to the driver at appropriate times. Typically the
;ninor number selects a subdevice attached to a given controller, or one of several similar hardware inter-
aces.

The major device numbers for block and character devices are used as indices in separate tables; they
both start at 0 and therefore overlap.

Overview of 1/0

The purpose of the gpen and crear system calls is to set up entries in three separate system tables. The
first of these is the u_ofile table, which is stored in the system’s per-process data area u. This table is in-
dexed by the file descriptor returned by the apen or creat, and is accessed during a read, write, or other
operation on the open file. The only contents of the entry is a pointer to the corresponding entry of the
Jile table, which is a per-system data base. There is one entry in the file table for each instance of open
or creat. This table is per-system because the same instance of an open file must be shared among the
several processes which can result from forks after the file is opened. A file table entry contains flags
which indicate whether the file was open for reading or writin,, or is a pipe; a count which is used to de-
cide when all processes using the entry have terminated or closed the file and therefore when the entry
can be released. There is also a 32-bit file offset which is used to indicate where in the file the next read
or write will take place. Finally, there is a pointer to the entry for the file in the inode table, which con-
tains a copy of the file's i-node. Notice that an entry in the file table corresponds precisely to an instance
of open or creat; if the same file is opened several times, it will have several entries in this table.
However, there is at most one entry in the inode table for a given file. Also, a file may enter the inode
table not only because it is open, but also because it is the current directory of some process or because it
is a special file containing a currently-mounted file system.

2 - Unix 1/0 System

An entry in the inode table differs somewhat from the corresponding i-node as stored on the disk; the
modified and accessed times are not stored, and the entry is augmented by a flag word containing infor-
mation about the entry, a count used to determine when it may be allowed to disappear, and the device
and i-number whence the entry came.

During the processing of an open or creat call for a special file, the system always calls the device’s open
routine to allow for any special processing required (rewinding a tape, turning on the data-terminal-ready
lead of a modem, etc.). However, the clase routine is called only when the last process closes a file, that
is, when the i-node table entry is being deallocated. Thus it is not feasible for a device to maintain, or
depend on, a count of its users, although it is quite possible to implement an exclusive-use device which
cannot be reopened until it has been closed.

When a read or write takes place, the user’s arguments and the file table entry are used to set up the vari-
ables w.u_base, u.u_count, and u.u_offset which respectively contain the (user) address of the 1/O target
area, the byte-count for the transfer, and the current location in the file. If the file referred to is a
character-type special file, the appropriate read or write routine is called; it is responsible for transferring
data and updating the count and current location appropriately as discussed below. Otherwise, the
current location is used to calculate a logical block number in the file. If the file is an ordinary file the
logical block number must be mapped (possibly using an indirect block) to a physical block number; a
block-type special file need not be mapped. In any event, the resulting physical block number is used, as
discussed below, to read or write the appropriate device.

Character device drivers

The cdevsw table specifies the interface routines present for character devices. Each devices provides five
routines: open, close, read, write, and special-function. Any of these may be missing. If a call on the
routine should be ignored, (e.g. open on non-exclusive devices which require no setup) the cdevsw entry
can be given as nulldev; if it should be considered an error, (e.8. write on read-only devices) nodev is used.

The open routine is called each time the file is opened with the full device number as argument. The
second argument is a flag which is non-zero only if the device is to be written upon.

The clase routine is called only when the file is closed for the last time, that is when the very last process
in which the file is open closes it. This means it is not possible for the driver to maintain its own count
of its users. The first argument is the device number; the second is a flag which is non-zero if the file
was open for writing in the process which performs the final clase.

When write is called, it is supplied the device as argument. The per-user variable w.u_count has been set
to the number of characters indicated by the user; for character devices, this number may be 0 initially.
u.u_base is the address supplied by the user from which to start taking characters. The system may call
the routine internally, so the flag w.u_segflg is supplied which indicates, if on, that u.u_base refers to the
system address space instead of the user’s.

The write routine should copy up to w.u_count characters from the user’s buffer to the device, decrement-
ing wu.u_count for each character passed. For most drivers, which work one character at a time, the
routine

cpass()

is used to pick up characters from the user’s buffer. Successive calls on it return the characters to be
written until w.u_count goes to 0 or an error occurs, when it returns —1. Cpass takes care of interrogating
u.u_segflg and updating w.u_count.

Write routines which want to transfer a probably large number of characters into an internal buffer may
also use the routine
iomove(buffer, offset, count, flag)

which is faster when many characters must be moved. Jomove transfers up to count characters into the
buffer starting offset bytes from the stat of the buffer; flag should be B_WRITE (which is 0) in the write
case. Caution: the caller is responsible for making sure the count is not too large and is non-zero. As an
efficiency note, /fomove is much slower if any of buffer+offset, count or u.u_base is odd.

The device’s read routine is called under conditions similar to write, except that u.u_count is guaranteed to

Unix 110 System - 3

be non-zero. To return characters to the user, the routine
passcic)

is available; it takes care of housekeeping like cpass and returns —1 as the last character specified by
u.u_count is returned to the user; before that time, 0 is returned. Jomove is also usable as with write; the
flag should be B_READ but the same cautions apply.

The “special-functions™ routine is invoked by the sty and gety system calls as follows:
sgity(dev, v)

where dev is the device number and v is a vector. In the gty case, the device is supposed to place up to
3 words of status information into the vector; this will be returned to the caller. In the sty case, v is 0;
the device should take up to 3 words of control information from the array w.u_arg/0...2].

Finally, each device should have appropriate interrupt-time routines. The interrupt-catching mechanism
makes the low-order four bits of the “new PS” word in the trap vector for the interrupt available to the
interrupt handler. This is conventionally used by drivers which deal with multiple similar devices to en-
code the minor device number.

A number of subroutines are available which are useful to character device drivers. Most of these
handlers, for example, need a place to buffer characters in the internal interface between their “top half™
(read/write) and “bottom half™ (interrupt) routines. For relatively low data-rate devices, the best mechan-
ism is the character queue maintained by the routines getc and putc. A queue header has the structure

struct {
int c_ce; I® charactercount */
char ‘*c_cf; /* first character °/
char “c_cl; /* last character */

} queue;

A character is placed on the end of a queue by
putc(c, &queue)

where ¢ is the character and queue is the queue header. The routine returns —1 if there is no space to
put the character, 0 otherwise. The first character on the queue may be retrieved by

getc(&queue)
which returns either the (non-negative) character or —1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system and in the stan-
dard system there are only some 600 character slots available. Thus device handlers, especially write
routines, must take care to avoid gobbling up excessive numbers of characters.

The other major help available to device handlers is the sleep-wakeup mechanism. The call
sleep(event, priority) :

causes the process to wait (allowing other processes to run) until the event occurs; at that time, the pro-
cess is marked ready-to-run and the call will return when there is no process with higher priority.

The call
wakeup(event)

indicates that the event has happened, that is, causes processes sleeping on the event to be awakened.
The event is an arbitrary quantity agreed upon by the sleeper and the waker-up. By convention, it is the
address of some data area used by the driver, which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened; they should check -
that the conditions which caused them to sleep no longer hold.

Priorities can range from 127 to —127ﬁ a higher numerical value indicates a less-favored scheduling situa-
tion. A process sleeping at negative priority cannot be terminated for any reason, although it is conceiv-
able that it may be swapped out. Thus it is a bad idea to sleep with negative priority on an event which

4 - Unix 1/O System

might never occur. On the other hand, calls to sleep with non-negative priority may never return if the
process is terminated by some signal in the meantime. Incidentally, it is a gross error to call sleep in a
routine called at interrupt time, since the process which is running is almost certainly not the process
which should go to sleep. Likewise, none of the variables in the user area “u.” should be touched, let
alone changed, by an interrupt routine.

If a device driver wishes to wait for some event for which it is inconvenient or impossible to supply a
wakeup, (for example, a d_evice.goins_on-line, which does not generally cause an interrupt), the call

sleep(&lbolt, priority)

may be given. Lboit is an external cell whose address is awakened once every 4 seconds by the clock in-
terrupt routine.

The routines . ,

spld(), spi5(), spl6(), spl7()

are available to set the processor priority level as indicated to avoid inconvenient interrupts from the
device. '

If a device needs to know about real-time intervals, then
' timeout(func, arg, interval) -

will be useful. This routine arranges that after interval sixtieths of a second, the func will be called with
arg as argument, in the style

(*func)(arg)

Timeouts are used, for example, to provide real-time delays after function characters like new-line and
tab in typewriter output, and to terminate an attempt to read the 201 Dataphone dp if there is no
response within a specified number of seconds. Notice that the number of sixtieths of a second is limit-
ed to 32767, since it must appear to be positive, and that only a bounded number of timeouts can be go-
ing on at once. Also, the specified func is called at clock-interrupt time, so it should conform to the re-
quirements of interrupt routines in general.

An example

The driver for the paper-tape reader/punch is worth examining as a fairly simple example of many of the
techniques used in writing character device handlers. The pcll structure contains a state (used for the
reader), an input queue, and an output queue. A structure, rather than three individual variables, was
used to cut down on the number of external symbols which might be confused with symbols in other
routines.) :

When the file is opened for reading, the open routine checks to see if its state is not CLOSED; if so an er-
ror is returned since it is considered a bad idea to let several people read one tape simultanecusly. The
state is set to WAITING, the interrupt is enabled, and a character is requested. The reason for this gam-
bit is that there is no direct way to determine if there is any tape in the reader or if the reader is on-line.
In these situations an interrupt will occur immediately and an error indicated. As will be seen, the inter-
rupt routine ignores errors if the state is WAITING, but if a good character comes in while in the WAIT-
ING suuate the interrupt routine sets the state to RE4ADING. Thus open loops until the state changes,.
meanwhile sleeping on the “lightning bolt” /bolt. If it did not sleep at all, it would prevent any other
process from running until the reader came on-line; if it depended on the interrupt routine to wake it up,
the effect would be the same, since the error interrupt is almost instantaneous.

Tt;e t‘)ipen-write case is much simpler; the punch is enabled and a 100-character leader is punched using
pcleader. :

The close routine is also simple; if the reader was open, any uncollected characters are flushed, the inter-
rupt is turned off, and the state is set to CLOSED. In the write case a 100-character trailer is punched.
The routine has a bug in that if both the reader and punch are open clase will be called only once, so that
either the leftover characters are flushed or the trailer is punched, but not both. It is hard to see how to
fix this problem except by making the reader and punch separate devices.

Unix 110 System - 5

The pcread routine tries to pick up characters from the input queue and passes them back until the user’s
read call is satisfied. If there are no characters it checks whether the state has gone to EOF, which
means that the interrupt routine detected an error in the READ state (assumed to indicate the end of the
wape). If so, pcread returns; either during this call or the next one no characters will be passed back, indi-
cating an end-of-file. If the state is still READING the routine enables another character by fiddling the
device's reader control register, provided it is not active, and goes to sleep.

When a reader interrupt occurs and the state is WAITING, and the device's error bit is set, the interrupt
is ignored; if there is no error the state is set to READING, as indicated in the discussion of pcread. If
the state is READING and there is an error, the state is set to EOF; it is assumed that the error
represents the end of the tape. If there is no error, the character is picked up and stored in the input
queue. Then, provided the number of characters already in the queue is less than the high-water mark
PCIHWAT, the reader is enabled again to read another character. This strategy keeps the tape moving
without flooding the input queue with unread characters. Finally, the top half is awakened.

Looking again at pcread, notice that the priority level is raised by sp/4() to prevent interrupts during the
loop. This is done because of the possibility that the input queue is empty, and just after the EOF test is
made an error interrupt occurs because the tape runs out. Then sleep will be called with no possibility of
a wakeup. In general the processor priority should be raised when a routine is about to sleep awaiting
some condition where the presence of the condition, and the consequent wakeup, is indicated by an inter-
rupt. The danger is that the interrupt might occur between the test for the condition and the call to
sleep, so that the wakeup apparently never happens.

At the same time it is a bad idea to raise the processor priority level for an extended period of time,
since devices with real-time requirements may be shut out so long as to cause an error. The pcread
routine is perhaps overzealous in this respect, although since most devices have a priority level higher
than 4 this difficulty is not very important.

The pewrite routine simply gets characters from the user and passes them to pcoutput, which is separated
out so that pcleader can call it also. Pcoutput checks for errors (like out-of-tape) and if none are present
makes sure that the number of characters in the output queue does not exceed PCOHWAT: if it does,
sleep is called. Then the character is placed on the output queue. There is a small bug here in that pcout-
put does not check that the character was successfully put on the queue (all character-queue space might
be empty), perhaps in this case it might be a good idea to sleep on the lightning-bolt until things quiet
down. Finally pcsrart is called, which checks to see if the punch is currently busy, and if not starts the
punching of the first character on the output queue.

When punch interrupts occur, pepint is called; it starts the punching of the next character on the output
queue, and if the number of characters remaining on the queue is less than the low-water mark
PCOLWAT it wakes up the write routine, which is presumably waiting for the queue to empty.

The Block-device Interface

Handling of block devices is mediated by a collection of routines which manage a set of buffers contain-
ing the images of blocks of data on the various devices. The most important purpose of these routines is
to assure that several processes which access the same block of the same device in multiprogrammed
fashion maintain a consistent view of the data in the block. A secondary but still important purpose is
to increase the efficiency of the system by keeping in-core copies f blocks which are being accessed fre-
quently. The main data base for this mechanism is the table of buffers byf. Each buffer header contains
a pair of pointers (b_forw, b_back) which maintain a doubly-linked list of the buffers associated with a
particular block device, and a pair of pointers (av_forw, av_back) which generally maintain a doubly-
linked list of blocks which are “free,” that is, eligible to be reallocated for another transaction. Buffers
which have I/O in progress or are busy for other purposes do not appear in this list. The buffer header
also contains the device and block number to which the buffer refers, and a pointer to the actual storage
associated with the buffer. There is a word count which is the negative of the number of words to be
transferred to or from the buffer; there is also a error byte and a residual word count used to- communi-
cate information from an 1/O routine to its caller. Finally, there is a flag word with bits indicating the
status of the buffer. These flags will be discussed below.

Six routines constitute the most important part of the interface with the rest of the system. Given a dev-
ice ‘and block number, both bread and getblk return a pointer to a buffer header for the block; the

6 - Unix 110 System

difference is that bread is guaranteed to return a buffer actually containing the current data for the block,
while gerblk returns a buffer which contains the data in the block only if it is already in core (whether it
is or not is indicated by the B_DONE bit; see below). In either case the buffer, and the corresponding
device block, is made *“busy,” so that other processes referring to it are obliged to wait until it becomes
free. Getblk is used, for example, when a block is about to be totally rewritten, so that its previous con-
tents are not useful; still, no other process can be allowed to refer to the block until the new data is
placed into it.

Given a pointer to a buffer, the brelse routine makes the buffer again available to other processes. It is
called, for example, after data has been extracted following a bread. There are three subtly-different write
routines, all of which take a buffer pointer as argument, and all of which logically release the buffer for
use by others and place it on the free list. Bwrite puts the buffer on the appropriate device queue, waits
for the write to be done, and sets the user’s error flag if required.

Bawrite places the buffer on the device’s queue, but does not wait for completion, so that errors cannot be
reflected directly to the user. Bdwrite does not start any 1/0 operation at all, but merely marks the buffer
so that if it happens to'be grabbed from the free list to contain data from some other block, the data in it
will first be written out.

Bwrite is used when one wants to be sure that 1/0 takes place correctly, and that errors are reflected to
the proper user; it is used, for example, when updating i-nodes. Bawrite is useful when more efficiency is
desired (because no wait is required for 1/0 to finish) but when it is reasonably certain that the write is
really required. Bdwrite is used when there is doubt that the write is needed at the moment. For exam-
ple, bdwrite is called when the last byte of a write system call falls short of the end of a block, on the as-
sumption that another write will be given soon which will re-use the same block. On the other hand, as
the end of a block is passed, bawrite is called, since probably the block will not be accessed again soon
and one might as well start the writing process as soon as possible.

In any event, notice that the routines getblk and bread dedicate the given block exclusively to the use of
the caller, and make others wait, while one of brelse, bwrite, bawrite, or bdwrite must eventually be called
to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the buffer. Since
they provide one important channel for information between the drivers and the block 1/0 system, it is
important to understand them.

B_READ

This bit is set when the buffer is handed to the device strategy routine (see below) to indicate a read
operation. The symbol B_WRITE is defined as 0 and does not define a flag; it is provided as a mnemon-
ic convenience to callers of routines like swap which have a separate argument which indicates read or
write.

B_DONE

This bit is set to 0 when a block is handed to the the device strategy routine and is turned on when the
operation completes, whether normally as the result of an error. It is also used as part of the return ar-
gument of getblk to indicate if 1 that the returned buffer actually contains the data in the requested block.

B_ERROR

This bit may be set to 1 when B_DONE is set to indicate that an 1/O or other error occurred. If it is set
the b_error byte of the buffer header may contain an error code if it is non-zero. If b_error is 0 the nature
of the error is not specified. Actually no driver at present sets b_error; the latter is provided for a future
improvement whereby a more detailed error-reporting scheme may be implemented.

B_BUSY

This bit indicates that the buffer header is not on the free list, i.e. is dedicated to someone’s exclusive
use. The buffer still remains attached to the list of blocks associated with its device, however. When
getblk (or bread, which calls it) searches the buffer list for a given device and finds the requested block

Unix 110 System - 7

with this bit on, it sleeps until the bit clears.

B_WANTED

This flag is used in conjunction with the B_BUSY bit. Before sleeping as described just above, ,it getblk
sets this flag. Conversely, when the block is freed and the busy bit goes down (in brelse) a wakeup is
given for the block header whenever B_ WANTED is on. This strategem avoids the overhead of having
to call wakeup every time a buffer is freed on the chance that someone might want it.

B_ASYNC

This bit is set by bawrite to indicate to the appropriate device driver that the buffer should be released
when the write has been finished, usually at interrupt time. The difference between bwrite and bawrite is
that the former starts 1/0, waits until it is done, and frees the buffer. The latter merely sets this bit and
starts 1/0. The bit indicates that relse should be called for the buffer on completion.

B_DELWRI

This bit is set by bdwrite before releasing the buffer. When getblk, while searching for a free block, dis-
covers the bit is 1 in a buffer it would otherwise grab, it causes the block to be written out before reusing
it.

B_XMEM

This is actually a mask for the pair of bits which contain the high-order two bits of the physical address
of the origin of the buffer; these bits are an extension of the 16 address bits elsewhere in the buffer
header.

B RELOC

This bit is currently unused; it previously indicated that a system-wide relocation constant was to be ad-
ded to the buffer address. It was needed during a period when addresses of data in the system (including
the buffers) were mapped by the relocation hardware to a physical address differing from its virtual ad-
dress.

Block Device Drivers
The bdevsw table contains the names of the interface routines and that of a table for each block device.

Just as for character devices, block device drivers may supply an open and a clase routine called respec-
tively on each open and on the final close of the device. Instead of separate read and write routines,
each block device driver has a strategy routine which is called with a pointer to a buffer header as argu-
ment. As discussed, the buffer header contains a read/write flag, the core address (including extended-
memory bits), the block number, a (negative) word count, and the major and minor device number. The
role of the strategy routine is to carry out the operation as requested by the information on the buffer
header. When the transaction is complete the B_DONE (and possibly the B_ERROR) bits should be set.
Then if the B ASYNC bit is set, brelse should be called; otherwise, wakeup. In cases where the device is
capable, under error-free operation, of transferring fewer words than requested, the device’s word-count
register should be placed in the residual count slot of the buffer header; otherwise, the residual count
should be set to 0. This particular mechanism is really for the benefit of the magtape driver; when read-
ing this device records shorter than requested are quite normal, and the user should be told the actual
length of the record. [However the mechanism has not been integrated into normal 1/0 even on magtape
and is used only in “raw” 1/O as discussed below.)

Notice that although the most usual argument to the strategy routines is a genuine buffer header allocated
as discussed above, all that is actually required is that the argument be a pointer to a place comaining the
appropriate information. For example the swap routine, which manages movement of core images to and
from the swapping device, uses the strategy routine for this device. Care has to be taken that no ex-
traneous bits get turned on in the flag word.

The device’s table specified by bdevsw has a byte to contain an active flag and an error count, a pair of
links which constitute the head of the chain of buffers for the device (b_forw, b_back), and a first and last

8 - Unix 110 System

pointer for a device queue. -Of these things, all are used solely by the device driver itself except for the
buffer-chain pointers. Typically the flag encodes the state of the device, and is used at a minimum to in-
dicate that the device is currently engaged in transferring information and no new command should be
issued. The error count is useful for counting retries when errors occur. The device queue is used to
remember stacked requests; in the simplest case it may be maintained as a first-in first-out list. Since
buffers which have been handed over to the strategy routines are never on the list of free buffers, the
pointers in the buffer which maintain the free list (av_forw, av_back) are also used to contain the pointers
which maintain the device queues.

A couple of routines are provided which are useful to block device drivers.
iodone(bp) ,

given an pointer to a buffer header, arranges that it be released or awakened as appropriate to the situa-
tion when the strategy module has finished with the buffer whether normally or after an error. (In the
latter case the B_ERROR bit has presumably been set)

When the device conforms to some rather loose standards adhered to by certain DEC hardware, the
routine

devstart(bp, devioc, devblk, hbcom)

is useful. Here bp is the address of the buffer header, devioc is the address of the slot in the device regis-
ters which accepts a perhaps-encoded device block number, devblk is the block number, and hbcom is a
quantity to be stored in the high byte of the device’s command register. It is understood, when using
this routine, that the device registers are laid out in the order

command register

word count

core address

block (or track or sector)

where the address of the last corresponds to devioc. Moreover, the device should correspond to the RP,
RK, and RF devices with respect to its layout of extended-memory bits and structure of read and write
commands.

The routine
geterror(bp)

can be used to examine the error bit in a buffer header an arrange that any error indication found therein
is reflected to the user. It may be called only in the non-interrupt part of a driver when 1/0 has complet-
ed (B_DONE has been set).

An example

The RF disk driver is worth studying as the simplest example of a block I/0 device. Its strategy routine
checks to see if the requested block lies beyond the end of the device; the size of the disk, in this in-
stance, is indicated by the minor device number. If the request is plausible, the buffer is placed at the
end of the device queue, and if the disk is not running, 7f5tart is called.

Rfstart merely returns if there is nothing to do, but otherwise sets the device-active flag, loads the ad-
dress extension register, and calls devstart to perform the remaining tasks attendant on beginning a data
transfer.

When a completion or error interrupt occurs, rfintr is called. If an error is indicated, and if the error
count has not exceeded 10, the same transaction is reattempted, otherwise the error bit is set. If there
was no error or if 10 failing transfers have been issued the queue is advanced and rfstart is called to begin
another transaction.

Raw Block-device I/0

A scheme has been set up whereby block device clnvers may provide the ability to transfer information
directly between the user’s core image and the device without the use of buffers and in blocks as large as
the-caller requests. The method involves setting up a character-type special file corresponding to the raw

Unix 110 System - 9

device and providing read and write routines which set up what is usually a private, non-shared buffer
header with the appropriate information and call the device’s strategy routine. If desired, separate open
and close routines may be provided but this is usually unnecessary. A special-function routine might
come in handy, especially for magtape.

A great deal of work has to be done to generate the “appropriate information™ to put in the argument
buffer for the strategy module; the worst part is to map relocated user addresses to physical addresses.
Most of this work is done by

physio(strat, bp, dev, rw)

whose arguments are the name of the strategy routine strat, the buffer pointer bp, the device number dev,
and a read-write flag rw whose values is either B_READ or B_ WRITE. Physio makes sure that the user’s
base address and count are even (because most devices work in words) and that the core area affected is
contiguous in physical space; it delays until the buffer is not busy, and makes it busy while the operation
is in progress; and it sets up user error return information.

The magtape driver is thie only one which as of this writing provides a raw 1/0 capability; given physio,
the work involved is trivial, and amounts to passing back to the user information on the length of the
record read or written. (There is some funniness because the magtape, uniquely among DEC devices,
works in bytes, not words.) Putting in raw 1/0 for disks should be equally trivial except that the disk ad-
dress has to be carefully checked to make sure it does not overflow from one logical device to another on
which the caller may not have write permission.

