A Tutorial Intreduction to the UNIX Text Editor

B. W. Kernighan

Bell Laboratories, Murray Hill, N. J.

Introduction

Ed is a “text editor”, that is, an interactive
program for creating and modifying “text”, using
directions provided by a user at a terminal. The
text is often a document like this one, or a pro-
gram or perhaps data for a program.

This introduction is meant to simplify
learning ed. The recommended way to learn ed-

is to read this document, simultaneously using ed_

to follow the examples, then to read the descrip-
tion in section I of the UNIX manual, all the
while experimenting with ed. (Solicitation of ad-
vice from experienced users is also useful.)

Do the exercises! They cover material not
completely discussed in the actual text. An ap-
pendix summarizes the commands.

Disclaimer

This is an introduction and a tutorial. For
this reason, no attempt is made to cover more
than a part of the facilities that ed offers
(although this fraction inciudes the most useful
and frequently used parts). Also, there is not
enough space to explain basic UNIX procedures.
We will assume that you know how 1o log on to
UNIX, and that you have at least a vague under-
standing of what a file is.

You must also know what character to type
as the end-of-line on your particular terminal.
This is & *“newline” on Model 37 Teletypes, and
“return” on most others. Throughout, we will
refer to this character, whatever it is, as “new-
line™.

Getting Started

We'll assume that you have logged in to
UNIX and it has just said “%”. The easiest way
to get ed is to type :

ed (followed by a newline)

You are now ready to go — ed is waiting for you
to tell it what to do.

Creating Text — the Append command *‘a”

As our first problem, suppose we want to
create some text starting from scratch. Perhaps
we are typing the very first draft of a paper;
clearly it will have to start somewhere, and un-
dergo modifications later. This section will show
how to get some text in, just to get started
Later we’'ll talk about how to change it.

When ed is first started, it is rather like
working with a blank piece of paper — there is
no text or information present. This must be
supplied by the person using ed; it is usually
done by typing in the text, or by reading it into
ed from a file. We will start by typing in some
text, and return shortly to how to read files.

First a bit of terminology. In ed jargon, the
text being worked on is said to be ‘“kept in a
buffer.” Think of the buffer as a work space, if
you like, or simply as the information that you
are going to be editing. In effect the buffer is
like the piece of paper, on which we will write
things, then change some of them, and finally
file the whole thing away for another day.

The user tells ed what to do to his text by
typing instructions called ‘“‘commands.” Most
commands consist of a single letter, which must
be typed in lower case. Each command is typed
on a separate line. (Sometimes the command is
preceded by information about what line or lines
of text are to be affected — we will discuss these
shortly.) Ed makes no response to most com-
mands — there is no prompting or typing of mes-
sages like “ready”. (This silence is preferred by
experienced users, but sometimes a hangup for
beginners.)

The first command is append, written as the
letter
a

all by itself. It means “append (or add) text
lines to the buffer, as I type them in.” Append-
ing is rather like writing fresh material on a
piece of paper.

So to enter lines of text into the buffer, we
just type an “a” followed by a newline, followed
by the lines of text we want, like this:

a

Now is the time

for all good men

1o come to the aid of their party.

The only way to stop appending is to type a
hine that contains only a period. The *.” is used
o tell ed that we have finished appending.
{Even experienced users forget that terminating
*." sometimes. If ed seems to be ignoring you,
type an extra line with just *.” on it. You may
then find you've added some garbage lines to

your text, which you'll have o take out later.)

After the append command has been done,
the buffer will contain the three lines

Now is the time
for all good men
to come to the aid of their party.

The “a” and *“.” aren't there, because they are
not text.

To add more text to what we already have,
just issue another “a” command, and continue
typing.

Error Messages — *?”

If at any time you make an error in the
commands you type to ed, it will tell you by typ-
ing

?

This is about as cryptic as it can be, but with
practice, you can usually figure out how you
goofed.

Writing text out as a file = the Write command

60,9

w

It’s likely that we'll want to save our text
for later use. To write out the contents of the
buffer onto a file, we use the write command

w

followed by the filename we want to write on.
This will copy the buffer’s contents onto the
specified file (destroying any previous informa-
tion on the file). To save the text on a file
named “junk™. for example, type

w junk

Leave a space between “w" and the file name.
Ed will respond by printing the number of char-
acters it wrote out. In our case, ed would
respond with

68

(Remember that blanks and the newline charac-
ter at the end of each line are included in the
character count.) Writing a file just makes a copy
of the text — the buffer’s contents are not dis-
turbed, so we can go on adding lines to it. This
is an important point. Ed at all times works on a
copy of a file, not the file itself. No change in
the contents of a file takes place until you give a
“w" command. (Writing out the text onto a file
from time to time as it is being created is a good
idea, since if the system crashes or if you make
some horrible mistake, you will lose all the text
in the buffer but any text that was written onto a
file is relatively safe.)

Leaving ed — the Quit command “‘q"

To terminate a session with ed, save the
text you're working on by writing it onto a file
using the “w™ command, and then type the
command

q

which stands for quit. The system will respond
with “%”. At this point your buffer vanishes,
with all its text, which is why you want to write
it out before quitting.

Exercise 1:
Enter ed and create some text using

a
ootext.. .

Write it out using “w”. Then leave ed with the
“q" command, and print the file, to see that
everything worked. (To print a file, say

pr filename
or
cat filename
in response to “%". Try both.)

Reading text from a file — the Edit command
Ote'O

A common way to get text into the buffer
is 1o read it from a file in the file system. This is
what you do to edit text that you saved with the
“w" command in a previous session. The edit
command “e” fetches the entire contents of a
file into the buffer. So if we had saved the three
lines “Now is the time", etc., with a “w" com-
mand in an earlier session, the ed command

e junk

would fetch the entire contents of the file
“junk” into the buffer, and respond

68

which is the number of characters in “junk™. I

anything was already in the buffer, it is deleted firsi.

If we use the *e™ command 1o read a file
into the buffer, then we need not use a file name
after a subsequent “w™ command; ed remembers
the last file name used in an “e” command, and
“w" will write on this file. Thus a common way
O ORCTINE Qs

od

¢ lile

{editing session]

w

q

You can find out at any time what file
name ed is remembering by typing the file com-
mand “f. In our case, if we typed

(
¢d would reply
Jjunk

Reading text from a file = the Read command

YR 1}

r

Sometimes we want 1o read a file into the
buffer without destroying anything that is al-
ready there. This is done by the read command
“r*. The command

r junk

will read the file “junk™ into the buffer; it adds it
10 the end of whatever is already in the buffer.
So if we do a read after an edit:

e junk
r junk

the buffer will contain rwo copies of the text (six
lines).

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the “w™ and “'e" commands, “r" prints the
number of characters read in, after the reading
operation is complete.

Generally speaking, *r
than —¢™.

"

is much less used

Exercise 2:

Experiment with the “e” command — ury
reading and printing various files. You may get
an error 7", typically because you spelled the
file name wrong. Try alternately reading and ap-
pending to see that they work similarly. Verify
that

ed filename
is exactly equivalent 1o
d

¢ filename
What does

[filename

[}

do?

Printing the contents of the buffer — the Print
command *p°’

To print or list the contents of the buffer
(or parts of it) on the terminal, we use the print
command

p
The way this is done is as follows. We specify
the lines where we want printing to begin and
where we want it to end, separated by a comma,
and followed by the letter “p”. Thus to print the
first two lines of the bufier, for example, (that is,
lines 1 through 2) we say

1.2p
Ed will respond with

Now is the time
for all good men

(starting line=1, ending line=2 p)

Suppose we want to print a// the lines in
the buffer. We could use *1,3p™ as above if we
knew there were exactly 3 lines in the buffer.
But in general, we don’t know how many there
are, so what do we use for the ending line
number? Ed provides a shorthand symbol lor
“line number of last line in buffer” ~ the dollar
sign “$”. Use it this way:

1.8p
This will print a// the lines in the buffer (line)
to last line.) If you want to stop the printing be-
fore it is finished, push the DEL or Delete key;
ed will type

?
and wait for the next command.

To print the lasr line of the buffer, we
could use

$,%p
but ed lets us abbreviate this to

$p
We can print any single line by typing the line
number followed by a “p™. Thus
Ip
praduces the response
Now is the time
which is the first line of the buffer.

In Lt ed lets us abbreviate even lurther:
we can print any single line by typing just the
linc number — no need to type the letter “p™.
So il we say

S

ed will print the last line of the buffer for us.
We can also use *$" in combinations like
$—1.%p
which prints the last two lines of the bufier.
This helps when we want 10 see how lar we got
in typing.

Exercise 3:

As before, create some text using the ap-
pend command and experiment with the “p”
command. You will find, for example, that you
can’t print line 0 or a line beyond the end of the
buffer, and that attempts to print a buffer in re-
verse order by saying

3lp
don't work.

The current line = *‘Dot™ or *.**

Suppose our buffer still contains the six
lines as above, that we have just typed

1,3p
anq ee{ has printed the three lines for us. Try
1yping just

p (no line numbers).
This will print

10 come 10 the aid of their party.

which is the third line of the buffer. In fact it is
the last {most recent) line that we have done
anything with. (We just printed it!) We can re-
peat this “p"” command without line numbers,
and it will continue to print line 3.

The reason is that ed maintains a record of
the last line that we did anything to (in this case,
line 3, which we just printed) so that it can be
used instcad of an explicit line number. This
most recent line is referred 10 by the shorthand
symbol

(pronounced “dot”).

Dot is a line number in the same way that “3"
is. it means exactly “the current line"”, or loose-
ly, “the line we most recently did something t0."
We can use it in several ways — one possibility
is to say

“3p

This will print all the lines from (including) the
current line to the end of the buffer. In our case
these are lines 3 through 6.

Some commands change the value of dot,
while others do not. The print command sets
dot 10 the number of the last line printed: by
our last command, we would have *." = “§" =
6.

Dot is most useful when used in combina-
tions like this one:

o+l (or equivalently, .+1p)

This means “print the next line™ and gives us a
handy way to step slowly through a buffer. We
can also say
1
which means *“print the line before the current

line.” This enables us to go backwards if we
wish. Another useful one is something like

(or .~1p)

~3,.—1p
which prints the previous three lines.

Don’t forget that all of these change the
value of dot. You can find out what dot is at
any time by typing

£Ed will respond by printing the value of dot.

Let's summarize some things about the “p”
command and dot. Essentially “p™ can be pre-
ceded by 0, 1. or 2 line numbers. If there is no
line number given, it prints the *‘current line”,
the line that dot refers to. If there is one line
number given (with or without the letter “p™), it
prints that line {and dot is set there); and if
there are two line numbers, it prints all the lines
in that range (and sets dot to the last line print-
ed.) If two line numbers are specified the first
can’t be bigger than the second (see Exercise 2.)

Typing a single newline will cause printing
of the next line — it’s equivalent to *“.+1p”. Try
it. Try typing ™ — it's equivalent to “.—1p".

Deteting lines: the **d"* command

Supposc we want to get rid of the three ex-
tra lines in the buffer. This is done by the delere
command

d

Except that *'d™ deletes lines instead of printing
them, its action is similar to that of “p”. The
lines 10 be deleted are specified for *'d™ exactly
as they are for “p™:

starting line, ending line d
Thus the command
4.3d

deletes lines 4 through the end. There are now
three lines left, as we can check by using

1.8p

And notice that *$" now is line 3! Dot is set to
the next line after the last line deleted, unless
the last line deleted is the last line in the buffer.
In that case, dot is set to *$”.

Exercise 4:

"o

Experiment with *“a”, “e™, “r”, “w", “p",
and “d" until you are sure that you know what
they do, and until you understand how dot, “$",
and line numbers are used.

If you are adventurous, try using line
numbers with “a”, “r”, and “w" as well. You
will find that “a" will append lines after the line
number that you specify (rather than after dot);
that *'r” reads a file in gfter the line number you
specify (not necessarily at the end of the buffer);
and that “w"” will write out exactly the lines you
specify, not necessarily the whole buffer. These
variations are sometimes handy. For instance
you can insert a file at the beginning of a buffer
by saying

Or filename

and you can enter lines at the beginning of the
buffer by saying

0a
L. text. ..

Notice that *.w™ is very different from

w

Modifying text: the Substitute command *‘s**

We are now ready to try one of the most
important of all commands — the substitute
command

S

This is the command that is used to change indi-
vidual words or letters within a line or group of
lines. It is what we use, for example, for correct-
ing spelling mistakes and typing errors.

Suppose that by a typing error, line | says
Now is th lime

— the “e™ has been left off “the”. We can use
*s™ 1o fix this up as follows:

Is/th/the/

This says: “in line 1, substitute for the charac-
ters ‘th’ the characters ‘the’.” To verify that it
works (ed will not print the result automatically)
we say

P
and get
Now is the time

which is what we wanted. Notice that dot must
have been set 10 the line where the substitution
took place, since the “p” command printed that
line. Dot is always set this way with the “s”
command.

The general way to use the substitute com-
mand is

starting-tine, ending-line s/change this/to this/

Whatever string of characters is between the
first pair of slashes is replaced by whatever is
between the second pair, in a// the lines between
starting line and ending line. Only the first oc-
currence on each line is changed, however. If
you want to change every occurrence, see Exer-
cise 5. The rules for line numbers are the same
as those for *p”, except that dot is set to the last
line changed. (But there is a trap for the
unwary: if no substitution took place, dot is nor
changed. This causes an error “?" as a warn-
ing.)

Thus we can say

1,8s/speling/spelling/

and correct the first spelling mistake on each line
in the text. (This is useful for people who are
consistent misspelters!)

If no line numbers are given, the *'s” com-
mand assumes we mean “make the substitution
on line dot”, so it changes things only on the

- current line. This leads to the very common se-

quence

s/something/something else/p

which makes some correction on the current
line, and then prints it, to make sure it worked
out right. If it didn't, we can try again. (Notice
that we put a print command on the same line as
the substitute. With few exceptions, “p” can
follow any command; no other multi-command
lines are legal.)

It's also legal to say

s/... !l

which means *‘change the first string of charac-
ters to nothing”, i.e., remove them. This is useful
for deleting extra words in a line or removing
extra letters from words. For instance, if we had

Nowxx is the time
we can say

s/xx//p
to get

Now is the time

Notice that “//" here means “no characters”,
not a blank. There is a difference! (See below
for another meaning of “//™.)

Exercise §:

Experiment with the substitute command.
See what happens if you substitute for some
word on a line with several occurrences of that
word. For example, do this:

a
the other side of the coin

s/the/on the/p
You will get
on the other side of the coin

A substitute command changes only the first oc-
currence of the first string. You can change all
occurrences by adding a “g” (for “global™) to
the *'s” command, like this:

s/.../...1gp

Try other characters instead of slashes to delimit
the two sets of characters in the “s” command —
anything should work except blanks or tabs.

(If you get funny results using any of the °

characters
A B
read the section on “Special Characters™.)

Context searching = */ .../

With the substitute command mastered, we
can move on to another highly important idea of
ed — context searching.

Suppose we have our original three line
text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose we want (0 find the line that contains
“their” so we can change it to “the”. Now with
only three lines in the buffer, it's pretty easy to
keep track of what line the word “their” is on.
But if the buffer contained several hundred lines,
and we’d been making changes, deleting and
rearranging lines, and so on, we would no longer
really know what this line number would be.
Context searching is simply a method of specify-
ing the desired line, regardless of what its
number is, by specifying some context on it.

The way we say “search for a line that
contains this particular string of characters” is to
type

/string of characters we want to find/

For example, the ed line

/their/

is a context search which is sufficient to find the
desired line — it will locate the next occurrence
of the characters between slashes (“their”). It
also sets dot to that line and prints the line for
verification:

to come to the aid of their party.

“Next occurrence™ means that ed starts looking
for the string at line “.+1", searches to the end
of the buffer, then continues at line 1 and
searches to line dot. (That is, the search “wraps
around” from *$" to 1.) It scans all the lines in
the buffer until it either finds the desired line or
gets back to dot again. If the given string of
characters can’t be found in any line, ed types
the error message
9

Otherwise it prints the line it found.

We can do both the search for the desired
line and a substitution all at once, like this:

/their/s/their/the/p
which will yield '
to come to the aid of the party.

There were three parts to that last command:
context search for the desired line, make the

. substitution, print the line.

The expression *“/their/” is a context
search expression. In their simplest form, all
context search expressions are like this — a
string of characters surrounded by slashes. Con-
text searches are interchangeable with line
numbers, so they can be used by themselves to
find and print a desired line, or as line numbers
for some other command, like “s”. We used
them both ways in the examples above.

Suppose the buffer contains the three fami-
liar lines

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers
/Now/+1
/good/
/party/—1
are all context search expressions, and they all

refer to the same line (line 2). To make a
change in line 2, we could say

/Now/+1s/good/bad/
or
/good/s/good/bad/
or
/party/—1s/good/bad/
The choice is dictated only by convenience. We
could print all three lines by, for instance
/Now/,/party/p
or
/Now/,/Now/+2p .
or by any number of similar combinations. The
first one of these might be better if we don’t
know how many lines are involved. (Of course,

if there were only three lines in the buffer, we'd
use

1,$p
but not if there were several hundred.)

The basic rule is: a context search expres-
sion is the same as a line number, so it can be
used wherever a line number is needed.

Exercise 6:

Experiment with context searching. Try a
body of text with several occurrences of the
same string of characters, and scan through it
using the same context search.

Try using context searches as line numbers

for the substitute, print and delete commands.
(They can also be used with “r”, “w”, and *“a™.)

Try context searching using *“ext?” in-
stead of “/text/”. This scans lines in the buffer
in reverse order rather than normal. This is
sometimes useful if you go too far while looking
for some string of characters — it’s an easy way
to back up.

(If you get funny results with any of the
characters

B T S
read the section on “Special Characters™.)

Ed provides a shorthand for repeating a
context search for the same string. For example,
the ed line number

/string/

will find the next occurrence of “string”. It of-
ten happens that this is not the desired line, so
the search must be repeated. This can be done
by typing merely

"

This shorthand stands for “the most recently
used context search expression.” It can also be
used as the first string of the substitute com-
mand, as in

/stringl/s//string2/
which will find the next occurrence of “stringl™
and replace it by “string2”. This can save a lot
of typing. Similarly

2?
means “scan backwards for the same expres-
sion.” :

Change and Insert — *‘c** and “i”
This section discusses the change command
c

which is ‘used to change or replace a group of
one or more lines, and the insert command

i
which is used for inserting a group of one or
more lines.

“Change”, written as

c
is- used to replace a number of lines with
different lines, which are typed in at the termi-

nal. For example, to change lines “.+1” through
“3$” 10 something else, type

+1,3¢
... type the lines of text you want here . . .

The lines you type between the “c” command
and the “.” will take the place of the original

lines between start line and end line. This is
most useful in replacing a line or several lines
which have errors in them.

I only one line is specified in the *c” com-
mand, then just that line is replaced. (You can
type in as many replacement lines as you like.)
Notice the use of *“.” to end the input — this
works just like the “.” in the append command
and must appear by itself on a new line. If no
line number is given, line dot is replaced. The
value of dot is set to the last line you typed in.

“Insert” is similar to append — for instance

Istring/i
.. . type the lines to be inserted here . . .

will insert the given text before the next line that
contains “string”. The text between “i” and *“.”
is inserted before the specified line. If no line
number is specified dot is used. Dot is set to the
last line inserted.

Exercise 7:
“Change” is rather like a combination of

delete followed by insert. Experiment to verify
that

start, end d
i
L. text. ..

is almost the same as

start, end ¢
L. text. ..

These are not precisely the same if line “$” gets
deleted. Check this out. What is dot?

Experiment with “a” and “i”, to see that
they are similar, but not the same. You will ob-
serve that

line-number a
Lo dext ...

appends afrer the given line, while

line-number i
Ltext. ..

.

inserts before it. Observe that if no line number
is given, “i” inserts before line dot, while *“a”
appends after line dot.

Moving text around: the *‘m’* command

The move command “m"” is used for cut-
ting and pasting — it lets you move a group of
lines from one place to another in the buffer.
Suppose we want to put the first three lines of
the buffer at the end instead. We could do it by
saying:

13w temp

$r temp

1.3d
(Do you see why?) but we can do it a lot easier
with the “m" command:

1,3m$
The general case is

start line, end line m after this line

Notice that there is a third line to be specified —
the place where the moved stuff gets put. Of
course the lines to be moved can be specified by
context searches; if we had

First paragraph

e;':;i of first paragraph.
Second paragraph

end of second paragraph.

we could reverse the two paragraphs like this:
/Second/,/second/m/First/—1

Notice the *“—1" — the moved text goes gfter the

line mentioned. Dot gets set to the last line
moved.

The global commands *‘g"* and *“v™

The global command *‘g” is used to execute
one or more ed commands on all those lines in
the buffer that match some specified string. For
example

g/peling/p .
prints all lines that contain “peling”. More use-
fully,
g/peling/s//pelling/gp
makes the substitution everywhere on the line,
then prints each corrected line. Compare this to
1,8s/peling/pelling/gp

which only prints the last line substituted.
Another subtle difference is that the “g" com-
mand does not give a “?” if “peling” is not
found where the *“s” command will.

There may be several commands (includ-
ing uan' ucn “i" urn' "W". but no‘ “8"); in (hat

- case, every line except the last must end with a

backslash “\":

g/xxx/.~1s/abc/def/\
+2s/ghi/ikIA
~2..p

makes changes in the lines before and after each
line that contains *“xxx", then prints all three
lines.

"

The *“v" command is the same as “g”, ex-
cept that the commands are executed on every
line that does nor match the string following **v™:

v/ /d .
deletes every line that does not contain a blank.

Special Characters

You may have noticed that things just
don't work right when you used some characters
like.*.", ©***, “$", and others in context searches
and the substitute command. The reason is
rather complex, although the cure is simple. Ba-
sically, ed treats these characters as special, with
special meanings. For instance, in a context
search or the first string of the substitute command
only,

Ix.y/

means “a line with an x, any character, and a y,"
not just “a line with an x, a period, and a y." A
complete list of the special characters that can
cause trouble is the following:
R T L B

Waming: The backslash character \ is special to
ed. For safety’s sake, avoid it where possible. If
you have to use one of the special characters in
a substitute command, you can turn off its magic
meaning temporarily by preceding it with the
backslash. Thus

sA\\.*/backslash dot star/
will change “\.*” into “backslash dot star”.

Here is a hurried synopsis of the other spe-
cial characters. First, the circumflex * =
signifies the beginning of a line. Thus

/”string/

finds “string” only if it is at the beginning of a
line: it will find '

string
but not
the string...

The dollar-sign *$” is just the opposite of the
circumflex; it means the end of a line:

Istring$/

will only find an occurrence of “string™ that is at
the end of some line. This implies, of course,

that

/"string$/
will find only a line that contains just “string™,
and

.8/
finds a line containing exactly one character.

The character “.”, as we mentioned above,
matches anything:

Ix.yl/
malches any of

X+y

X=-y

Xy

X.y
This is useful in conjunction with “*™, which is
a repetition character; *“a*” is a shorthand for

“any number of a's,” so *“.*" matches any
number of anythings. This is used like this:

s/.*Istuft/
which changes an entire line, or

sl 0
which deletes all characters in the line up to and
including the last comma. (Since “.*” finds the
longest possible match, this goes up to the last
comma.)

“[™ is used with “)” to form “‘character
classes™; for example,

/{1234567890)/

matches any single digit — any one of the char-
acters inside the braces will cause a match.

Finally, the “&" is another shorthand char-
acter - it is used only on the right-hand part of a
substitute command where it means “‘whatever
was matched on the left-hand side™. It is used
to save typing. Suppose the current line con-
tained

Now is the time

and we wanted to put parentheses around it. We
could just retype the line, but this is tedious. Or
we could say

s/

s/$N/

using our knowledge of *"" and “$”. But the
easiest way uses the “&™:

s/ /(&)

This says “match the whole line, and replace it
by itself surrounded by parens.” The “&™ can

_be used several times in a line; consider using

s/t &7 &M

to produce
Now is the time? Now is the time!!

We don't have to match the whole line, of
course: if the buffer contains

the end of the world
we could type
/world/s//& is at hand/
to produce
the end of the world is at hand

Observe this expression carefully, for it illus-
trates how to take advantage of ed to save typing.
The string *“/world/” found the desired line; the
shorthand /7" found the same word in the line;
and the “&" saved us from typing it again.

The “&” is a special character only within
the replacement text of a substitute command,
and has no specia! meaning elsewhere. We can
turn off the special meaning of “&” by preceding
it with a *\":

s/ampersand\&/

will convert the word “ampersand” into the
literal symbol “&™ in the current line.

Summary of Commands and Line Numbers

The general form of ed commands is the
command name, perhaps preceded by one or
two line numbers, and, in the case of ¢, rand w,
followed by a file name. Only one command is
allowed per line, but a p command may follow
any other command (except for ¢, 7, wand g).

a (append) Add lines to the buffer (at line dot,
unless a different line is specified). Appending
continues until “.” is typed on a new line. Dot
is set to the last line appended.

¢ (change) Change the specified lines to the new
text which follows. The new lines are terminat-
ed by a “.”. If no lines are specified, replace line
dot. Dot is set to last line changed.

d (delete) Delete the lines specified. If none are
specified, delete line dot. Dot is set to the first
undeleted line, unless “$” is deleted, in which
case dot is set to “$”.

e (edit) Edit new file. Any previous contents of
the buffer are thrown away, so issue a w before-
hand if you want to save them.

S (file) Print remembered filename. If a name
follows fthe remembered name will be set to it.

g (global) g/~icommands will execute the com-

-10 -

mands on those lines that contain “---, which
can be any context search expression.

i (insert) Insert lines before specified line (or dot)
until a *.” is typed on a new line. Dot is set to
last line inserted.

m (move) Move lines specified to after the line
named after m. Dot is set to the last line moved.

p (print) Print specified lines. If none specified,
print line dot. A single line number is
equivalent to “line-number p”. A single newline
prints “.+1", the next line.

g (quit) Exit from ed. Wipes out all text in
buffer!!

r (read) Resd a file into buffer (at end unless
specified elsewhere.) Dot set to last line read.

s (substitute) sistringlistring2/ will substitute the
characters of ‘string2’ for ‘stringl’ in specified
lines. If no line is specified, make substitution in
line dot. Dot is set to last line in which a substi-
tution took place, which means that if no substi-
tution took place, dot is not changed. s changes
only the first occurrence of stringl on a line; to
change all of them, type a “g” after the final
slash.

v (exclude) vi—~/commands executes “commands”
on those lines that do not contain *“---".

w (write) Write out buffer onto a file. Dot is not
changed.

.= (dot value) Print value of dot. (“=" by itself
prints the value of “$”,)

! (temporary escape)

Execute this line as a UNIX command.
/—/Context search. Search for next line which
contains this string of characters. Print it. Dot
is set to line where string found. Search starts at
“.+1", wraps around from “$” to 1, and contin-
ues to dot, if necessary.

?-—-2 Context search in reverse direction. Start
search at “.—1", scan to 1, wrap around to “$".

