A System for Typesetting Mathematics

B. W. Kernighan
and
L. L. Cherry

Bell Laboratonies, Murray Hill, N. J.

ABSTRACT

This paper describes the design and implementation of a system for typeset-
ning mathematics, currently running on the UNIX operating system. An appendix
contains the user’s manual for the language

The language has been designed 10 be casy to learn and to use by people (for
cxample, secretaries and mathematical typists) who know necither mathematics
nor typesetting. Early experience indicates that the language can be learned in
an hour or so. for it has few rules and fewer exceptions. For typical expressions.
the size and font changes. positioning, line drawing, and the like necessary 1o
print according 10 mathematical conventions are all done automatically. For ex-
ample. the input

sum from i=0 to infinity x sub i = pi over 2

produces

The syntax of 1he language is specified by a small context-free grammar: a
compiler-compiler is used 10 make a compiler that translates this language into
typesetting commands.

Output may be produced on either a phototypeselter or on terminals with
forward and reverse hall-line motions. The system interfaces directly with text
formatting programs. so mixtures of text und mathemaltics may be handled sim-
ply. This 1echnical report is an example of its output.

A System for Typesetting Mathematics

B. W. Kernighan
and
L. L. Cherry

Bell Labaratories, Murray Hill, N. J.

| Introduction

*Mathematics is known in the trade as difficult, or penalty, copy because it is slower, more
difficult, and more expensive 10 set in type than any other kind of copy normally occurring in
books and journatls.” (1]

One difficulty with mathematical text is the multiplicity of characters, sizes. and fonts. An
expression as simple as .

lim_(an x)¥7 2% = |

x=—u/2
requires an intimate mixture of Roman, italic and Greek letters, in three sizes, and a special
character or two. (“Requires™ is perhaps the wrong word, but mathemaltics has its own typo-
graphical conventions which are quite different from those of ordinary text) A compositor set-
ling such an expression by traditional methods must sit before a large box containing a large
number of pieces of lead, choosing them one at a time and fitting them together by hand.

A sccond area of difficulty is the two dimensional character of mathematics, which the su-
perscript and limits in the preceding example showed in its simplest form. This is carried furth-
cr by

by
al +
+.__b§.._
az az + v
and still further by

1 \/-e'"x—f
2mab 8 Jae™+b

— dx] -1 JZ

fa(,mx —be —mX ' W tanh (\/— (@>0,56>0)
-1 -1 _\/5
————-”h/-a—b coth (J'

These examples also show line-drawing, built-up characters like braces and radicals, and a spec-
irum of positioning prablems. (A later section shows what one has (o type 10 produce these on
our system.)

2 TYPESETTING MATHEMATICS

2. Photocomposition

Photocomposition techniques, which have alrecady had a substantial effect on traditional
printing, can also be uscd Lo solve some of the problems of setting mathematics.

A phototypesetter is u device which exposes, for example, a piece of photographic paper,
placing characters wherever they are wanted. The Graphic Systems phototypesetter(2] on the
UNIX [3] operating system works by shining light through a character stencil. The character is
made the right size by lenses, and the light beam is directed by fiber optics to the desired place
on a piece of pholographic paper. The exposed paper is developed and typically used in some
form of photo-offset reproduction.

On UNIX, the pholotypesetter is driven by a formatting program called TROFF [4]. TROFF is
quite acceptable for setting running text, the job it was designed for. It also provides all of the
facilities that one needs for doing mathematics — arbitrary horizontal and vertical motions, line-
drawing, size changing, and so on — but the syntax for describing these special operations is
difficult to learn, and difficult even for experienced users to type correctly.

For (his reason we decided to use TROFF as an “assembly language”, write a language for
describing mathematical expressions, and compile it into TROFF.

3. Language Design

The fundamental principle upon which we based our language design is that the language
should be easy (o use by people (for example, secretaries) who know neither mathematics nor
lypesetting.

This principle implies several things. First, “normal” mathematical conventions about
operator precedence, parentheses, and so on cannot be used, for to give special meaning 1o such
characters means that the user has to understand what he or she is typing. Thus the language
should not assume, for instance, that parentheses are always balanced — consider the half-open
interval (a,b] — nor that Va+b can be replaced by (a+b)%, nor that 1/(1 —x) is better written

as (or vice versa).

l=-x
* Second, there should be relatively few rules, keywords, special symbols and operators, and
the like, so the language is easy to learn and 1o remember. Furthermore, there should be few ex-
ceplions to the rules that do exist — if something works in one situation, it should generally
work everywhere. If a variable can have a subscrip(, then a subscript can have a subscipt, and so
on without limit. '

Third, standard things should happen automatically, so that common or usual cases require
no special treatment. Someone who types x=y+z should get x=y+2z Subscripts and super-
scripts should automatically be printed in an appropriately smaller size, with no special interven-
tion. Fraction bars have to be made the right length and positioned at the right height. And so
on. Indeed a mechanism for overriding default actions has 10 exist, but its application is the ex-
ception, not the rule. .

We will assume that the typist has a reasonable picture (a two dimensional representation) of
the desired final form, as might be written by the author of a paper. We also assume that the in-
put is lyped on a compuler terminal much like an ordinary typewriter, which implies an input al-
phabet of perhaps one hundred characters, none of them special. This is fortunate, for we can
then resist the temptation 10 build a language where each special character has a special meaning.

A secondary, bul still important, goal in our design was that the sysiem should be easy to
implement, since neither of the authors had any desire to make a long-term project of it. Furth-
er, since when we began we had a less than precise idea of where we were going, it was also
necessary that the program be easy (o change at any time. g

To make the program easy to build and easy to change, and to guarantee regularity (“it
should generally work everywhere"), the language is defined by a context-free grammar (described
in a later section). The compiler for the language was built using a compiler-compiler.

TYPESETTING MATHEMATICS 3

A prioei, the grammar/compiler-compiler approach seemed the right thing 10 do. Our subse-
quent experience leads us to believe that any other course would have been folly. The original
language was designed in a few days, and construction of a working sysiem sufficient that we
could try things out required perhaps a person-month. Since then, we have spent another part-
time three months or so wning, adding facilities, and regularly changing things as users make cri-
ticisms and suggestions.

We also decided quite early that we would let TROFF do our work for us whenever possible.
rather than reinventing the wheel. Since TROFF is quite a powerful program, with a macro facili-
ly. text and arithmetic variables, numerical computation and testing, and conditional branching,
we have been able 10 avoid writing a lot of mundane but tricky software. For example, we store
no text strings, but simply pass them on to TROFF. Thus we avoid having to write a storage
management package. Furthermore, we have been able 19 isolate ourselves from the details of
the particular device, character set, and so on currently in use. For example, we let TROFF com- -
pute the widths of all strings of characters — we nced know nothing about them.

A third design goal is special 0 our environment. Since our program is only useful for
typesctling mathematics. it is necessary that it interface cleanly with the underlying typesetiing
language for the benefit of those users who want 10 set intermingled mathematics and text (the
usual case). The standard mode of operation is that when a document is typed, mathematical ex-
pressions are input as part of the text, but marked by (user settable) delimiters. The math-setter
reads this input and treats as comments those things which are not mathematics, simply passing
them through untouched. At the same time it converts the mathematical input into the neces-
sary TROIE commands. The resulting output is passed directly 10 TROFF where the comments
and the mathematical parts both become text and/or TROFF commands.

4, The Language

We will not try to describe the language precisely here; interested readers should look at (S}
for more details. Throughout this section, we will write expressions exactly as they are handed
1o the math-setter, except that we won't show the delimiters that mark the beginning and end.

As we said, lyping x=y+z should produce x =y+ 2z, and indeed it does. Variables are made
italic, operators are Roman, and normal spacings between letters and operators are altered slight-
ly to give a more pleasing appearance.

Spaces and newlines in the input are used by the math-setter to separate pieces of the input;
they are not used to create space in the output. Thus

X -y + 7z
also gives x=y+2z This free-form input makes il easier to type and edit the inpul, for an ex-
pression may be typed as many short lines.

Extra whitc space can be forced into the output by several characters of various sizes — a
tilde * =™ gives a space cqual to the normal word spacing in text; a circumflex “* ™ gives half this
much.

Spaces (or tildes, eic.) are used 1o delimit pieces of the input. For example, to get something
like

£y =2m [sintwr) dr
we wrile
flt=2 pi int sin (omega U"dL

Here spaces are necessary in the input to indicate thal sin, pi, int, omega are special, and potential-
ly worth special treatment. The math-setter looks cach such token up in a 1able, and if appropri-
atc gives it a translation. In this case, pi and omega become their Greek equivalents, inf becomes
the integral sign (which must be moved down and enlarged so it looks “right™), and sin is made
Roman, following conventional mathematical pructice. Parentheses, digitls and operators are

TYPHSETTING MATIEMATICS -d - USER'S GUIDE

X

it
And braces can occur within braces if necessary:
x sup {i suplalpha + beta})
Xt
To print braces, enclose them in double quotes, like "{". This is discussed in a later section.

8. Fractions

To draw a [raction, use the word over:
a+b over 2c =|
gives
a+b
2¢
The line is made the right length and positioned automatically. Braces can be used to make clear
what goes over what:

{alpha + beta} over {sin (x)}

-]

is
a+ Q
sin(x)
Ower is considered by the equation-setler to be of lower precedence than sub and sup, so

—b sup 2 over {pi x]
needs no braces 10 be unambiguously
- hZ
wx

The precedence rules. which decide which operation is done first, are summarized near the end
of the user’s guide. When in doubl, however, use braces 10 make clear what goes with what.

9. Square Roots

To draw a square root, use sgrt.
sqrt a + sqrifax sup 2 +bx-+c)
is
Va+Vaxi+bx+c
Warning — square roots of tall quantities look lousy, because a rool-sign big enough to cover the
quantity is 100 dark and heavy:

sqrt{a sup 2 over b sub 2}

JVE
by

Good stylg replaces big square roots by something (o the power !:
(a¥/5, %

is

TYPESETTING MATHEMATICS -5 - USER'S GUIDE

0. Summation, Integral, Etc.

Summations, integrals, and similar constructions are easy:
sum from i=0 to {i= inf} x sup i

produces

[

IR

=

Notice that we used braces to indicate where the upper limit begins and ends. No braces were
necessary for the lower limit, because it contained no blanks. The braces will never hurt, though
~ alwavs use braces around the from and ro limits, if they contain any blanks.

The from and o parts are both optional, but if both are used, they have 1o be in that order.
(iher useful characters can replace the “sum™

im prod union inter
become, respectively,

f 1 U n

Since the thing before the from can be anything, the from-to construction can often be used in
unexpected ways:

lim from {n—=> inf} x sub n =0

limx, =0

1} =00

11. Big Brackets, Etc.

To get big brackets | |, braces |], parentheses (), and bars | | around things, use the lef7 and right
commands:

teft { a over b + 1 right | = feft ('rc over d right) + left [e right]

p
h i I"]
‘The resulting brackets are made big enough to cover whatever they enclose.

Several warnings about brackets are in order. First, notice that braces are typically bigger
than brackets and parentheses, because they arc made up of three, five, seven, etc. pieces, while
brackets can be made up of two, three, etc. Second, left and right parentheses typically look
poor, because the character set is poorly designed. Finally, the *“right™ part may be omitled: a
“left something™ need not have a corresponding *right something”™. If the right part is omitied,
putl braces around the thing you want the left bracket 10 encompass. Otherwise, the resulling
brackets may be too large.

[i+|

2. Piles

There is a gencral facility for making vertical piles of hings; it comes in several flavors.
For example:
A =" lef [
pile { a above b above ¢ } = pile { x above y above z }
right |

.

TYPESETTING MATHEMATICS -6 - USER'S GUIDE

will make

ax
by
¢z
The elements of the pile (there can be as many as you want) are centered one above another, at
the right height for most purposes. The keyword ahove is used Lo separate the pieces; braces are
used around the entire list.

Three other forms of pile exist: /pile makes a pile with the elements left-justified, rpile
makes a right-justified pile; and cpile makes a centcred pile, just like pife. The vertical spacing
between the pieces is somewhat larger for |-, r- and cpiles than it is for ordinary piles.

sign(x)"=" left | Ipile {I above 0 above —1}
== Ipile {iFx>0 above if"x=0 above if"x<0)

A =

makes
! ifx>0
sign(x) = {0 if x=0
-1 ifx<0

Notice the left brace without a matching right one.
13. Size and Font Changes

By default, equations are set in 10 point type, with standard mathematical font conven-
tions. Although the equation-setier makes a valiant attlempt 10 use esthetically pleasing sizes and
fonts, it is not perfect. To change sizes and fonlts, use size n and roman, italic, and bold. Legal
sizes which may follow size are 6, 7, 8,9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, 36.

size 14 bold x = y + size 14 { alpha + beta }
gives
X=y+at +ﬁ

As always, use braces 10 delimit what you want affected. For example, you can change an entire
equation by

size 12 { ... }

14. Diacritical Marks

To get funny marks on 1op of letters:
x dot + X dot + y hat + y dotdot + x~y bar + {alpha + beta] bar + x tilde
gives
%+ X+ p+y+X=y+a+p+x

)
As well as possible, the mark is placed at the right height. The bar is made the right length for
the cntire construct; other marks are centered. (At present, this works only on italic letters; oth-
er fonts are botched.) By the way, there is no “prime” — use *’".

15, Quoted Text

. Any input entirely within quotes ("...") is not subject to any of the font changes and spac-
ing adjustments normally done by the equation setter. This provides a way 10 do your own spac-
ing and adjusting if needed:

TYPESETTING MATHEMATICS 7

The ambiguous grammaur approach seems to be quite useful — the grammar we use is small
cnough to he casily understiood, for it contains none of the productions that would be normally
used for resolving ambiguity. Instead the supplemental information about precedence and associ-
ativity (also small enough 10 be undersiood) provides the compiler-compiler with the information
it needs to make a fast, deterministic parser for the specific language we want. When the
language is supplemenied by the disambiguating rules, it is in fact LR() and thus easy lo parse.

The output code s generated as the input is scinned. In particular, any time a production of
the grammar is recognized, (potentially) some TROFF is output. For example, when the lexical
analyzer reports that it has found a TEXT (i.e., a string of contiguous characters), we have recog-
nized the production

text : TEXT

The translation of this is simple — we generate a local name for the string, then hand the name
and the string to TROFE, and let TROFF worry about the storage management. All we save is the
name of the string, its height, and its baseline.

As another example, the transiation associated with the production
box : box OVER box
is

Width of output box = slightly more than fargest input width

Height of output box = slightly more than sum of input heights

String describing output box is
move down;, move right enough 10 center bottom box:
draw bottom box (i.e., copy string for bottom box);
move up. move left enough to center top box;
draw 10p box (i.e., copy string for top box).
move down and left; draw linc full width;
return 10 proper base line.

Maost of the other productions have equally simplc semantic actions — picturing the output as a
set of properly-placed boxes makes the right sequence of positioning commands quite obvious.
The only difficulty is in finding the right numbers (0 use for esthetically pleasing positioning.

With a grammar, it is usually clear how to cxiend the language. For instance, one of our
users suggested a TENSOR operator, (o make constructions like

iy
Grammatically, this is casy: adding the production
box : TENSOR { list }
would he sufficient; semantically, we need only jugele the boxes to the right places.

6. Experience

There are really three aspects of interest — how well the math-setter sets mathematics, how
well it satisfics its goal of being “easy 10 use™, and how easy it was (0 build.

The lirst area is casily disposed of. The material in this paper, of course, has all been set by
the program. The reader can judge for himself whether it is good enough for the purpose he has
in mind. One comment made by a user is that although the output is not as good as the best
hand-sct material, it is still better than average, and much better than the worst. In any case,
who cares? Printed books cannot compete with the birds and flowers of illuminated manuscripts
on esthetic grounds, either, but they have some clear economic advantages.

Some of the deficiencies in the output could be cleaned up with more work on our part. For
example, we often leave 100 much space between a Roman letter and an italic one. If we were
willing 10 keep track of the fonts involved, we could do this better more of the time.

8 TYPESETTING MATHEMATICS

Some other weaknesses are inherent in our output devics = it is hard, for instance, to draw
u line of an arbitrary length without getling a perceptibie oversirike at one end.

As 10 case of use, ut the time of writing, the vystem has been used by two distinct groups.
The main user population right now is about half a dozen members of staff in the Computing
Science Resecarch Center, who have collectively produced well over a hundred pages of
mathematical text. Their typical reaction has been something like

(1) It’s easy 10 write, although I make the following mistakes...
(2) How do | do...?

(3) 1t boiches the following things... Why don't you fix them?
(4) You really need the following features...

The learning time is short — a few minutes gives the general flavor, and typing a page or
two of a paper generally uncovers most of the misconceptions about how it works. This group
seems very satisfied with the language.

We have much less experience with the second user group, the secretaries and mathematical
typists who were the original target of the system. For administrative reasons, most of them had
had little chance 10 try it, so their response is limited to “it looks easy, much easier than what we
have 1o do now.” The one math typist who now uses it on a regular basis is an enthusiastic con-
vert,

The language is somewhat prolix, but this doesn't seem excessive considering how much is
being done, and it's certainly more compact than the corresponding TROFF commands. For ex-
ample, here is the source for the continued fraction expression in section 1:

asub O + b sub 1 over
{a sub 1 + b sub 2 over
{a sub 2 + b sub 3 over
fasub 3 + .. }}}

This is the input for the large integral of Section 1; notice the use of definilions.

define emx "{e sup mx}"

define mab "{m sqrt ab}"

define sa "(sqrt a}"

define sb "{sqrt b}"

int dx over {a emx — be sup —mx} ="

left { Ipile (
| over {2 mab) “log” {sa emx — sb} over {sa emx + sb}
above
1 over mab ~ wanh sup —1 (sa over sb emx)
above

=1 over mab ~ coth sup —1 (sa over sb emx)

""""" (>0,"0>0)

As 10 ease of construction, we have already mentioned that there are really only a few
person-months invesied. Much of this time has gone into two things - fine-tuning (what is the
most csthetically pleasing space 1o use between the numerator and denominator of a fraction?).
and changing things found deficient by our users (shouldn’t a tilde be a delimiter?).

The program consists of a number of small, essentially unconnected modules for code gen-
eralion, a simple lexical analyzer, a canned parser which we did not have (o write, and some mis-
cellany associated with input files and the macro facility. There are only about 15 global vari-
ables. The program is currently about 1000 lines of ¢ (4]; a language reminiscent of BCPL). A-
bout 20 percent of these lines are “print™ slatements, generating the output code. To our ever-
lasting shame, there are two GOTOs in the program.

TYPESETTING MATHEMATICS 9

The semantic routines that generate the actual TROFF commands can be changed to accom-
modatc other output languages or devices. For example, in less than 24 hours, one of us
changed the enlire semantic package to drive NROFF, a precursor of TROFF, for typesetting
mathematics on teletypewriter devices capable of reverse line motions. -Since many potential
users do not have access 10 the typesetter, but still have (0 type mathematics, this provides a way
10 get a typed version of the final output which is is close enough for debugging purposes, and
sometimes even for ultimate use.

1. Conclusions

We think we have shown that it is possible to do acceptably good typesetting of mathemat-
ics on a photocomposer, with an input language that is easy 10 use and that satisfies many users’
demands, and that such a package can be implemented in short order, given a decent typesetting
package underneath.

Defining a language, and building a compiler for it with a compiler-compiler seems like the
only sensible way 10 do business. Our experience with the use of a grammar and a compiler-
compiler has been uniformly favorable. If we had written everything into code directly, we
would have been locked into whatever design we originally thought of. Furthermore, we would
have never been sure where the exceptions and special cases were. But because we have a gram-
mar, we can change our minds readily and still be reasonably sure that if a construction works in
one place, it will work everywhere.

8. Acknowledgements

We are deeply indebted 0 J. F. Ossanna, the author of TROFF, for his willingness to modify
TROFF to make our task easier, and for his continuous assistance during the development of our
program. We are aiso grateful to A. V. Aho for help with language theory, to S. C. Johnson for
aid with the compiler-compiler, and to our early users A. V. Aho, S. I. Feldman, S. C. Johnson,
R. W. Hamming, and M. D. Mcliroy for their constructive criticisms.

References
1] 4 Manual of Style, 12th Edition. University of Chicago Press, 1969. p 295.

21 Mode! CIAIT Phototypesetter. Graphic Systems, Inc. Lowell, Mass.
131 D M Ritchie and K. L. Thompson, The UNIX Time-Sharing System. CACM, July 1974
[4] J. F. Ossanna, TROFF User's Manual. Bell Laboratories internal memorandum.

S| B. W. Kernighan, L. L. Cherry, Typesetting Mathematics — User's Guide. Appendix 10 this
paper. ’

[6] D. M. Ritchie, C Reference Manual. Bell Laboratories internal memorandum.

